Print this page
6064 ixgbe needs X550 support
   1 /******************************************************************************
   2 
   3   Copyright (c) 2001-2012, Intel Corporation 
   4   All rights reserved.
   5   
   6   Redistribution and use in source and binary forms, with or without 
   7   modification, are permitted provided that the following conditions are met:
   8   
   9    1. Redistributions of source code must retain the above copyright notice, 
  10       this list of conditions and the following disclaimer.
  11   
  12    2. Redistributions in binary form must reproduce the above copyright 
  13       notice, this list of conditions and the following disclaimer in the 
  14       documentation and/or other materials provided with the distribution.
  15   
  16    3. Neither the name of the Intel Corporation nor the names of its 
  17       contributors may be used to endorse or promote products derived from 
  18       this software without specific prior written permission.
  19   
  20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  30   POSSIBILITY OF SUCH DAMAGE.
  31 
  32 ******************************************************************************/
  33 /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.14 2012/07/05 20:51:44 jfv Exp $*/
  34 
  35 #include "ixgbe_common.h"
  36 #include "ixgbe_phy.h"


  37 #include "ixgbe_api.h"
  38 
  39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  45                                         u16 count);
  46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  50 
  51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
  53                                          u16 *san_mac_offset);
  54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55                                              u16 words, u16 *data);
  56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  57                                               u16 words, u16 *data);
  58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  59                                                  u16 offset);
  60 
  61 /**
  62  *  ixgbe_init_ops_generic - Inits function ptrs
  63  *  @hw: pointer to the hardware structure
  64  *
  65  *  Initialize the function pointers.
  66  **/
  67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
  68 {
  69         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
  70         struct ixgbe_mac_info *mac = &hw->mac;
  71         u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
  72 
  73         DEBUGFUNC("ixgbe_init_ops_generic");
  74 
  75         /* EEPROM */
  76         eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
  77         /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
  78         if (eec & IXGBE_EEC_PRES) {
  79                 eeprom->ops.read = &ixgbe_read_eerd_generic;
  80                 eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
  81         } else {
  82                 eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
  83                 eeprom->ops.read_buffer =
  84                                  &ixgbe_read_eeprom_buffer_bit_bang_generic;
  85         }
  86         eeprom->ops.write = &ixgbe_write_eeprom_generic;
  87         eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
  88         eeprom->ops.validate_checksum =
  89                                       &ixgbe_validate_eeprom_checksum_generic;
  90         eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
  91         eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
  92 
  93         /* MAC */
  94         mac->ops.init_hw = &ixgbe_init_hw_generic;
  95         mac->ops.reset_hw = NULL;
  96         mac->ops.start_hw = &ixgbe_start_hw_generic;
  97         mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
  98         mac->ops.get_media_type = NULL;
  99         mac->ops.get_supported_physical_layer = NULL;
 100         mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
 101         mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
 102         mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
 103         mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
 104         mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
 105         mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
 106         mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;


 107 
 108         /* LEDs */
 109         mac->ops.led_on = &ixgbe_led_on_generic;
 110         mac->ops.led_off = &ixgbe_led_off_generic;
 111         mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
 112         mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
 113 
 114         /* RAR, Multicast, VLAN */
 115         mac->ops.set_rar = &ixgbe_set_rar_generic;
 116         mac->ops.clear_rar = &ixgbe_clear_rar_generic;
 117         mac->ops.insert_mac_addr = NULL;
 118         mac->ops.set_vmdq = NULL;
 119         mac->ops.clear_vmdq = NULL;
 120         mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
 121         mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
 122         mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
 123         mac->ops.enable_mc = &ixgbe_enable_mc_generic;
 124         mac->ops.disable_mc = &ixgbe_disable_mc_generic;
 125         mac->ops.clear_vfta = NULL;
 126         mac->ops.set_vfta = NULL;
 127         mac->ops.set_vlvf = NULL;
 128         mac->ops.init_uta_tables = NULL;


 129 
 130         /* Flow Control */
 131         mac->ops.fc_enable = &ixgbe_fc_enable_generic;

 132 
 133         /* Link */
 134         mac->ops.get_link_capabilities = NULL;
 135         mac->ops.setup_link = NULL;
 136         mac->ops.check_link = NULL;



 137 
 138         return IXGBE_SUCCESS;
 139 }
 140 
 141 /**
 142  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 143  *  control
 144  *  @hw: pointer to hardware structure
 145  *
 146  *  There are several phys that do not support autoneg flow control. This
 147  *  function check the device id to see if the associated phy supports
 148  *  autoneg flow control.
 149  **/
 150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
 151 {



 152 
 153         DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
 154 

















 155         switch (hw->device_id) {

 156         case IXGBE_DEV_ID_X540T:
 157         case IXGBE_DEV_ID_X540T1:
 158                 return IXGBE_SUCCESS;
 159         case IXGBE_DEV_ID_82599_T3_LOM:
 160                 return IXGBE_SUCCESS;



 161         default:
 162                 return IXGBE_ERR_FC_NOT_SUPPORTED;
 163         }











 164 }
 165 
 166 /**
 167  *  ixgbe_setup_fc - Set up flow control
 168  *  @hw: pointer to hardware structure
 169  *
 170  *  Called at init time to set up flow control.
 171  **/
 172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 173 {
 174         s32 ret_val = IXGBE_SUCCESS;
 175         u32 reg = 0, reg_bp = 0;
 176         u16 reg_cu = 0;

 177 
 178         DEBUGFUNC("ixgbe_setup_fc");
 179 
 180         /*
 181          * Validate the requested mode.  Strict IEEE mode does not allow
 182          * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 183          */
 184         if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 185                 DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");

 186                 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 187                 goto out;
 188         }
 189 
 190         /*
 191          * 10gig parts do not have a word in the EEPROM to determine the
 192          * default flow control setting, so we explicitly set it to full.
 193          */
 194         if (hw->fc.requested_mode == ixgbe_fc_default)
 195                 hw->fc.requested_mode = ixgbe_fc_full;
 196 
 197         /*
 198          * Set up the 1G and 10G flow control advertisement registers so the
 199          * HW will be able to do fc autoneg once the cable is plugged in.  If
 200          * we link at 10G, the 1G advertisement is harmless and vice versa.
 201          */
 202         switch (hw->phy.media_type) {
 203         case ixgbe_media_type_fiber:
 204         case ixgbe_media_type_backplane:









 205                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 206                 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 207                 break;
 208         case ixgbe_media_type_copper:
 209                 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 210                                      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
 211                 break;
 212         default:
 213                 break;
 214         }
 215 
 216         /*
 217          * The possible values of fc.requested_mode are:
 218          * 0: Flow control is completely disabled
 219          * 1: Rx flow control is enabled (we can receive pause frames,
 220          *    but not send pause frames).
 221          * 2: Tx flow control is enabled (we can send pause frames but
 222          *    we do not support receiving pause frames).
 223          * 3: Both Rx and Tx flow control (symmetric) are enabled.
 224          * other: Invalid.
 225          */
 226         switch (hw->fc.requested_mode) {


 251         case ixgbe_fc_rx_pause:
 252                 /*
 253                  * Rx Flow control is enabled and Tx Flow control is
 254                  * disabled by software override. Since there really
 255                  * isn't a way to advertise that we are capable of RX
 256                  * Pause ONLY, we will advertise that we support both
 257                  * symmetric and asymmetric Rx PAUSE, as such we fall
 258                  * through to the fc_full statement.  Later, we will
 259                  * disable the adapter's ability to send PAUSE frames.
 260                  */
 261         case ixgbe_fc_full:
 262                 /* Flow control (both Rx and Tx) is enabled by SW override. */
 263                 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 264                 if (hw->phy.media_type == ixgbe_media_type_backplane)
 265                         reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 266                                   IXGBE_AUTOC_ASM_PAUSE;
 267                 else if (hw->phy.media_type == ixgbe_media_type_copper)
 268                         reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 269                 break;
 270         default:
 271                 DEBUGOUT("Flow control param set incorrectly\n");

 272                 ret_val = IXGBE_ERR_CONFIG;
 273                 goto out;

 274         }
 275 
 276         if (hw->mac.type != ixgbe_mac_X540) {
 277                 /*
 278                  * Enable auto-negotiation between the MAC & PHY;
 279                  * the MAC will advertise clause 37 flow control.
 280                  */
 281                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 282                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 283 
 284                 /* Disable AN timeout */
 285                 if (hw->fc.strict_ieee)
 286                         reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 287 
 288                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 289                 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 290         }
 291 
 292         /*
 293          * AUTOC restart handles negotiation of 1G and 10G on backplane
 294          * and copper. There is no need to set the PCS1GCTL register.
 295          *
 296          */
 297         if (hw->phy.media_type == ixgbe_media_type_backplane) {
 298                 reg_bp |= IXGBE_AUTOC_AN_RESTART;
 299                 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);


 300         } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 301                     (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
 302                 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 303                                       IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
 304         }
 305 
 306         DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 307 out:
 308         return ret_val;
 309 }
 310 
 311 /**
 312  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 313  *  @hw: pointer to hardware structure
 314  *
 315  *  Starts the hardware by filling the bus info structure and media type, clears
 316  *  all on chip counters, initializes receive address registers, multicast
 317  *  table, VLAN filter table, calls routine to set up link and flow control
 318  *  settings, and leaves transmit and receive units disabled and uninitialized
 319  **/
 320 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 321 {
 322         s32 ret_val;
 323         u32 ctrl_ext;
 324 
 325         DEBUGFUNC("ixgbe_start_hw_generic");
 326 


 415                 /* Start the HW */
 416                 status = hw->mac.ops.start_hw(hw);
 417         }
 418 
 419         return status;
 420 }
 421 
 422 /**
 423  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 424  *  @hw: pointer to hardware structure
 425  *
 426  *  Clears all hardware statistics counters by reading them from the hardware
 427  *  Statistics counters are clear on read.
 428  **/
 429 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 430 {
 431         u16 i = 0;
 432 
 433         DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
 434 
 435         (void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 436         (void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 437         (void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
 438         (void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
 439         for (i = 0; i < 8; i++)
 440                 (void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
 441 
 442         (void) IXGBE_READ_REG(hw, IXGBE_MLFC);
 443         (void) IXGBE_READ_REG(hw, IXGBE_MRFC);
 444         (void) IXGBE_READ_REG(hw, IXGBE_RLEC);
 445         (void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 446         (void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 447         if (hw->mac.type >= ixgbe_mac_82599EB) {
 448                 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 449                 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 450         } else {
 451                 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 452                 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 453         }
 454 
 455         for (i = 0; i < 8; i++) {
 456                 (void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 457                 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 458                 if (hw->mac.type >= ixgbe_mac_82599EB) {
 459                         (void) IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 460                         (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 461                 } else {
 462                         (void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 463                         (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 464                 }
 465         }
 466         if (hw->mac.type >= ixgbe_mac_82599EB)
 467                 for (i = 0; i < 8; i++)
 468                         (void) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 469         (void) IXGBE_READ_REG(hw, IXGBE_PRC64);
 470         (void) IXGBE_READ_REG(hw, IXGBE_PRC127);
 471         (void) IXGBE_READ_REG(hw, IXGBE_PRC255);
 472         (void) IXGBE_READ_REG(hw, IXGBE_PRC511);
 473         (void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
 474         (void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
 475         (void) IXGBE_READ_REG(hw, IXGBE_GPRC);
 476         (void) IXGBE_READ_REG(hw, IXGBE_BPRC);
 477         (void) IXGBE_READ_REG(hw, IXGBE_MPRC);
 478         (void) IXGBE_READ_REG(hw, IXGBE_GPTC);
 479         (void) IXGBE_READ_REG(hw, IXGBE_GORCL);
 480         (void) IXGBE_READ_REG(hw, IXGBE_GORCH);
 481         (void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
 482         (void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
 483         if (hw->mac.type == ixgbe_mac_82598EB)
 484                 for (i = 0; i < 8; i++)
 485                         (void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 486         (void) IXGBE_READ_REG(hw, IXGBE_RUC);
 487         (void) IXGBE_READ_REG(hw, IXGBE_RFC);
 488         (void) IXGBE_READ_REG(hw, IXGBE_ROC);
 489         (void) IXGBE_READ_REG(hw, IXGBE_RJC);
 490         (void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 491         (void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 492         (void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 493         (void) IXGBE_READ_REG(hw, IXGBE_TORL);
 494         (void) IXGBE_READ_REG(hw, IXGBE_TORH);
 495         (void) IXGBE_READ_REG(hw, IXGBE_TPR);
 496         (void) IXGBE_READ_REG(hw, IXGBE_TPT);
 497         (void) IXGBE_READ_REG(hw, IXGBE_PTC64);
 498         (void) IXGBE_READ_REG(hw, IXGBE_PTC127);
 499         (void) IXGBE_READ_REG(hw, IXGBE_PTC255);
 500         (void) IXGBE_READ_REG(hw, IXGBE_PTC511);
 501         (void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
 502         (void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
 503         (void) IXGBE_READ_REG(hw, IXGBE_MPTC);
 504         (void) IXGBE_READ_REG(hw, IXGBE_BPTC);
 505         for (i = 0; i < 16; i++) {
 506                 (void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 507                 (void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 508                 if (hw->mac.type >= ixgbe_mac_82599EB) {
 509                         (void) IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 510                         (void) IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 511                         (void) IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 512                         (void) IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 513                         (void) IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 514                 } else {
 515                         (void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 516                         (void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 517                 }
 518         }
 519 
 520         if (hw->mac.type == ixgbe_mac_X540) {
 521                 if (hw->phy.id == 0)
 522                         (void) ixgbe_identify_phy(hw);
 523                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
 524                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 525                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
 526                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 527                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
 528                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 529                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
 530                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 531         }
 532 
 533         return IXGBE_SUCCESS;
 534 }
 535 
 536 /**
 537  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 538  *  @hw: pointer to hardware structure
 539  *  @pba_num: stores the part number string from the EEPROM
 540  *  @pba_num_size: part number string buffer length
 541  *
 542  *  Reads the part number string from the EEPROM.


 662         if (ret_val) {
 663                 DEBUGOUT("NVM Read Error\n");
 664                 return ret_val;
 665         } else if (data == IXGBE_PBANUM_PTR_GUARD) {
 666                 DEBUGOUT("NVM Not supported\n");
 667                 return IXGBE_NOT_IMPLEMENTED;
 668         }
 669         *pba_num = (u32)(data << 16);
 670 
 671         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
 672         if (ret_val) {
 673                 DEBUGOUT("NVM Read Error\n");
 674                 return ret_val;
 675         }
 676         *pba_num |= data;
 677 
 678         return IXGBE_SUCCESS;
 679 }
 680 
 681 /**





























































































































































































 682  *  ixgbe_get_mac_addr_generic - Generic get MAC address
 683  *  @hw: pointer to hardware structure
 684  *  @mac_addr: Adapter MAC address
 685  *
 686  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 687  *  A reset of the adapter must be performed prior to calling this function
 688  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 689  **/
 690 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 691 {
 692         u32 rar_high;
 693         u32 rar_low;
 694         u16 i;
 695 
 696         DEBUGFUNC("ixgbe_get_mac_addr_generic");
 697 
 698         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 699         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 700 
 701         for (i = 0; i < 4; i++)
 702                 mac_addr[i] = (u8)(rar_low >> (i*8));
 703 
 704         for (i = 0; i < 2; i++)
 705                 mac_addr[i+4] = (u8)(rar_high >> (i*8));
 706 
 707         return IXGBE_SUCCESS;
 708 }
 709 
 710 /**
 711  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 712  *  @hw: pointer to hardware structure

 713  *
 714  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 715  **/
 716 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 717 {
 718         struct ixgbe_mac_info *mac = &hw->mac;
 719         u16 link_status;
 720 
 721         DEBUGFUNC("ixgbe_get_bus_info_generic");
 722 
 723         hw->bus.type = ixgbe_bus_type_pci_express;
 724 
 725         /* Get the negotiated link width and speed from PCI config space */
 726         link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
 727 
 728         switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 729         case IXGBE_PCI_LINK_WIDTH_1:
 730                 hw->bus.width = ixgbe_bus_width_pcie_x1;
 731                 break;
 732         case IXGBE_PCI_LINK_WIDTH_2:
 733                 hw->bus.width = ixgbe_bus_width_pcie_x2;
 734                 break;
 735         case IXGBE_PCI_LINK_WIDTH_4:
 736                 hw->bus.width = ixgbe_bus_width_pcie_x4;
 737                 break;
 738         case IXGBE_PCI_LINK_WIDTH_8:
 739                 hw->bus.width = ixgbe_bus_width_pcie_x8;
 740                 break;
 741         default:
 742                 hw->bus.width = ixgbe_bus_width_unknown;
 743                 break;
 744         }
 745 
 746         switch (link_status & IXGBE_PCI_LINK_SPEED) {
 747         case IXGBE_PCI_LINK_SPEED_2500:
 748                 hw->bus.speed = ixgbe_bus_speed_2500;
 749                 break;
 750         case IXGBE_PCI_LINK_SPEED_5000:
 751                 hw->bus.speed = ixgbe_bus_speed_5000;
 752                 break;
 753         case IXGBE_PCI_LINK_SPEED_8000:
 754                 hw->bus.speed = ixgbe_bus_speed_8000;
 755                 break;
 756         default:
 757                 hw->bus.speed = ixgbe_bus_speed_unknown;
 758                 break;
 759         }
 760 
 761         mac->ops.set_lan_id(hw);

 762 


















 763         return IXGBE_SUCCESS;
 764 }
 765 
 766 /**
 767  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 768  *  @hw: pointer to the HW structure
 769  *
 770  *  Determines the LAN function id by reading memory-mapped registers
 771  *  and swaps the port value if requested.
 772  **/
 773 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 774 {
 775         struct ixgbe_bus_info *bus = &hw->bus;
 776         u32 reg;
 777 
 778         DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
 779 
 780         reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 781         bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 782         bus->lan_id = bus->func;
 783 
 784         /* check for a port swap */
 785         reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 786         if (reg & IXGBE_FACTPS_LFS)
 787                 bus->func ^= 0x1;
 788 }
 789 
 790 /**
 791  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 792  *  @hw: pointer to hardware structure
 793  *
 794  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 795  *  disables transmit and receive units. The adapter_stopped flag is used by
 796  *  the shared code and drivers to determine if the adapter is in a stopped
 797  *  state and should not touch the hardware.
 798  **/
 799 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 800 {
 801         u32 reg_val;
 802         u16 i;
 803 
 804         DEBUGFUNC("ixgbe_stop_adapter_generic");
 805 
 806         /*
 807          * Set the adapter_stopped flag so other driver functions stop touching
 808          * the hardware
 809          */
 810         hw->adapter_stopped = TRUE;
 811 
 812         /* Disable the receive unit */
 813         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 814 
 815         /* Clear interrupt mask to stop interrupts from being generated */
 816         IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 817 
 818         /* Clear any pending interrupts, flush previous writes */
 819         (void) IXGBE_READ_REG(hw, IXGBE_EICR);
 820 
 821         /* Disable the transmit unit.  Each queue must be disabled. */
 822         for (i = 0; i < hw->mac.max_tx_queues; i++)
 823                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 824 
 825         /* Disable the receive unit by stopping each queue */
 826         for (i = 0; i < hw->mac.max_rx_queues; i++) {
 827                 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 828                 reg_val &= ~IXGBE_RXDCTL_ENABLE;
 829                 reg_val |= IXGBE_RXDCTL_SWFLSH;
 830                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 831         }
 832 
 833         /* flush all queues disables */
 834         IXGBE_WRITE_FLUSH(hw);
 835         msec_delay(2);
 836 
 837         /*
 838          * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 839          * access and verify no pending requests
 840          */
 841         return ixgbe_disable_pcie_master(hw);
 842 }
 843 
 844 /**
 845  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 846  *  @hw: pointer to hardware structure
 847  *  @index: led number to turn on
 848  **/
 849 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 850 {
 851         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 852 
 853         DEBUGFUNC("ixgbe_led_on_generic");
 854 
 855         /* To turn on the LED, set mode to ON. */
 856         led_reg &= ~IXGBE_LED_MODE_MASK(index);
 857         led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 858         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);


 891 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 892 {
 893         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 894         u32 eec;
 895         u16 eeprom_size;
 896 
 897         DEBUGFUNC("ixgbe_init_eeprom_params_generic");
 898 
 899         if (eeprom->type == ixgbe_eeprom_uninitialized) {
 900                 eeprom->type = ixgbe_eeprom_none;
 901                 /* Set default semaphore delay to 10ms which is a well
 902                  * tested value */
 903                 eeprom->semaphore_delay = 10;
 904                 /* Clear EEPROM page size, it will be initialized as needed */
 905                 eeprom->word_page_size = 0;
 906 
 907                 /*
 908                  * Check for EEPROM present first.
 909                  * If not present leave as none
 910                  */
 911                 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 912                 if (eec & IXGBE_EEC_PRES) {
 913                         eeprom->type = ixgbe_eeprom_spi;
 914 
 915                         /*
 916                          * SPI EEPROM is assumed here.  This code would need to
 917                          * change if a future EEPROM is not SPI.
 918                          */
 919                         eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 920                                             IXGBE_EEC_SIZE_SHIFT);
 921                         eeprom->word_size = 1 << (eeprom_size +
 922                                              IXGBE_EEPROM_WORD_SIZE_SHIFT);
 923                 }
 924 
 925                 if (eec & IXGBE_EEC_ADDR_SIZE)
 926                         eeprom->address_bits = 16;
 927                 else
 928                         eeprom->address_bits = 8;
 929                 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
 930                           "%d\n", eeprom->type, eeprom->word_size,
 931                           eeprom->address_bits);


 952         DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
 953 
 954         hw->eeprom.ops.init_params(hw);
 955 
 956         if (words == 0) {
 957                 status = IXGBE_ERR_INVALID_ARGUMENT;
 958                 goto out;
 959         }
 960 
 961         if (offset + words > hw->eeprom.word_size) {
 962                 status = IXGBE_ERR_EEPROM;
 963                 goto out;
 964         }
 965 
 966         /*
 967          * The EEPROM page size cannot be queried from the chip. We do lazy
 968          * initialization. It is worth to do that when we write large buffer.
 969          */
 970         if ((hw->eeprom.word_page_size == 0) &&
 971             (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 972                 status = ixgbe_detect_eeprom_page_size_generic(hw, offset);
 973         if (status != IXGBE_SUCCESS)
 974                 goto out;
 975 
 976         /*
 977          * We cannot hold synchronization semaphores for too long
 978          * to avoid other entity starvation. However it is more efficient
 979          * to read in bursts than synchronizing access for each word.
 980          */
 981         for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 982                 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 983                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 984                 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 985                                                             count, &data[i]);
 986 
 987                 if (status != IXGBE_SUCCESS)
 988                         break;
 989         }
 990 
 991 out:
 992         return status;
 993 }
 994 


1243  *  @hw: pointer to hardware structure
1244  *  @offset: offset of word in the EEPROM to read
1245  *  @words: number of word(s)
1246  *  @data: 16 bit word(s) from the EEPROM
1247  *
1248  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1249  **/
1250 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1251                                    u16 words, u16 *data)
1252 {
1253         u32 eerd;
1254         s32 status = IXGBE_SUCCESS;
1255         u32 i;
1256 
1257         DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1258 
1259         hw->eeprom.ops.init_params(hw);
1260 
1261         if (words == 0) {
1262                 status = IXGBE_ERR_INVALID_ARGUMENT;

1263                 goto out;
1264         }
1265 
1266         if (offset >= hw->eeprom.word_size) {
1267                 status = IXGBE_ERR_EEPROM;

1268                 goto out;
1269         }
1270 
1271         for (i = 0; i < words; i++) {
1272                 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1273                        IXGBE_EEPROM_RW_REG_START;
1274 
1275                 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1276                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1277 
1278                 if (status == IXGBE_SUCCESS) {
1279                         data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1280                                    IXGBE_EEPROM_RW_REG_DATA);
1281                 } else {
1282                         DEBUGOUT("Eeprom read timed out\n");
1283                         goto out;
1284                 }
1285         }
1286 out:
1287         return status;
1288 }
1289 
1290 /**
1291  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1292  *  @hw: pointer to hardware structure


1349  *  @hw: pointer to hardware structure
1350  *  @offset: offset of  word in the EEPROM to write
1351  *  @words: number of word(s)
1352  *  @data: word(s) write to the EEPROM
1353  *
1354  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1355  **/
1356 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1357                                     u16 words, u16 *data)
1358 {
1359         u32 eewr;
1360         s32 status = IXGBE_SUCCESS;
1361         u16 i;
1362 
1363         DEBUGFUNC("ixgbe_write_eewr_generic");
1364 
1365         hw->eeprom.ops.init_params(hw);
1366 
1367         if (words == 0) {
1368                 status = IXGBE_ERR_INVALID_ARGUMENT;

1369                 goto out;
1370         }
1371 
1372         if (offset >= hw->eeprom.word_size) {
1373                 status = IXGBE_ERR_EEPROM;

1374                 goto out;
1375         }
1376 
1377         for (i = 0; i < words; i++) {
1378                 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1379                         (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1380                         IXGBE_EEPROM_RW_REG_START;
1381 
1382                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1383                 if (status != IXGBE_SUCCESS) {
1384                         DEBUGOUT("Eeprom write EEWR timed out\n");
1385                         goto out;
1386                 }
1387 
1388                 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1389 
1390                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1391                 if (status != IXGBE_SUCCESS) {
1392                         DEBUGOUT("Eeprom write EEWR timed out\n");
1393                         goto out;


1422 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1423 {
1424         u32 i;
1425         u32 reg;
1426         s32 status = IXGBE_ERR_EEPROM;
1427 
1428         DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1429 
1430         for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1431                 if (ee_reg == IXGBE_NVM_POLL_READ)
1432                         reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1433                 else
1434                         reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1435 
1436                 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1437                         status = IXGBE_SUCCESS;
1438                         break;
1439                 }
1440                 usec_delay(5);
1441         }





1442         return status;
1443 }
1444 
1445 /**
1446  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1447  *  @hw: pointer to hardware structure
1448  *
1449  *  Prepares EEPROM for access using bit-bang method. This function should
1450  *  be called before issuing a command to the EEPROM.
1451  **/
1452 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1453 {
1454         s32 status = IXGBE_SUCCESS;
1455         u32 eec;
1456         u32 i;
1457 
1458         DEBUGFUNC("ixgbe_acquire_eeprom");
1459 
1460         if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1461             != IXGBE_SUCCESS)
1462                 status = IXGBE_ERR_SWFW_SYNC;
1463 
1464         if (status == IXGBE_SUCCESS) {
1465                 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466 
1467                 /* Request EEPROM Access */
1468                 eec |= IXGBE_EEC_REQ;
1469                 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470 
1471                 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1472                         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1473                         if (eec & IXGBE_EEC_GNT)
1474                                 break;
1475                         usec_delay(5);
1476                 }
1477 
1478                 /* Release if grant not acquired */
1479                 if (!(eec & IXGBE_EEC_GNT)) {
1480                         eec &= ~IXGBE_EEC_REQ;
1481                         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482                         DEBUGOUT("Could not acquire EEPROM grant\n");
1483 
1484                         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1485                         status = IXGBE_ERR_EEPROM;
1486                 }
1487 
1488                 /* Setup EEPROM for Read/Write */
1489                 if (status == IXGBE_SUCCESS) {
1490                         /* Clear CS and SK */
1491                         eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1492                         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1493                         IXGBE_WRITE_FLUSH(hw);
1494                         usec_delay(1);
1495                 }
1496         }
1497         return status;
1498 }
1499 
1500 /**
1501  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1502  *  @hw: pointer to hardware structure
1503  *
1504  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1505  **/
1506 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1507 {
1508         s32 status = IXGBE_ERR_EEPROM;
1509         u32 timeout = 2000;
1510         u32 i;
1511         u32 swsm;
1512 
1513         DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1514 
1515 
1516         /* Get SMBI software semaphore between device drivers first */
1517         for (i = 0; i < timeout; i++) {
1518                 /*
1519                  * If the SMBI bit is 0 when we read it, then the bit will be
1520                  * set and we have the semaphore
1521                  */
1522                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1523                 if (!(swsm & IXGBE_SWSM_SMBI)) {
1524                         status = IXGBE_SUCCESS;
1525                         break;
1526                 }
1527                 usec_delay(50);
1528         }
1529 
1530         if (i == timeout) {
1531                 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1532                          "not granted.\n");
1533                 /*
1534                  * this release is particularly important because our attempts
1535                  * above to get the semaphore may have succeeded, and if there
1536                  * was a timeout, we should unconditionally clear the semaphore
1537                  * bits to free the driver to make progress
1538                  */
1539                 ixgbe_release_eeprom_semaphore(hw);
1540 
1541                 usec_delay(50);
1542                 /*
1543                  * one last try
1544                  * If the SMBI bit is 0 when we read it, then the bit will be
1545                  * set and we have the semaphore
1546                  */
1547                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1548                 if (!(swsm & IXGBE_SWSM_SMBI))
1549                         status = IXGBE_SUCCESS;
1550         }
1551 
1552         /* Now get the semaphore between SW/FW through the SWESMBI bit */
1553         if (status == IXGBE_SUCCESS) {
1554                 for (i = 0; i < timeout; i++) {
1555                         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1556 
1557                         /* Set the SW EEPROM semaphore bit to request access */
1558                         swsm |= IXGBE_SWSM_SWESMBI;
1559                         IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1560 
1561                         /*
1562                          * If we set the bit successfully then we got the
1563                          * semaphore.
1564                          */
1565                         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1566                         if (swsm & IXGBE_SWSM_SWESMBI)
1567                                 break;
1568 
1569                         usec_delay(50);
1570                 }
1571 
1572                 /*
1573                  * Release semaphores and return error if SW EEPROM semaphore
1574                  * was not granted because we don't have access to the EEPROM
1575                  */
1576                 if (i >= timeout) {
1577                         DEBUGOUT("SWESMBI Software EEPROM semaphore "
1578                                  "not granted.\n");
1579                         ixgbe_release_eeprom_semaphore(hw);
1580                         status = IXGBE_ERR_EEPROM;
1581                 }
1582         } else {
1583                 DEBUGOUT("Software semaphore SMBI between device drivers "

1584                          "not granted.\n");
1585         }
1586 
1587         return status;
1588 }
1589 
1590 /**
1591  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1592  *  @hw: pointer to hardware structure
1593  *
1594  *  This function clears hardware semaphore bits.
1595  **/
1596 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1597 {
1598         u32 swsm;
1599 
1600         DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1601 
1602         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1603 


1617         u16 i;
1618         u8 spi_stat_reg;
1619 
1620         DEBUGFUNC("ixgbe_ready_eeprom");
1621 
1622         /*
1623          * Read "Status Register" repeatedly until the LSB is cleared.  The
1624          * EEPROM will signal that the command has been completed by clearing
1625          * bit 0 of the internal status register.  If it's not cleared within
1626          * 5 milliseconds, then error out.
1627          */
1628         for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1629                 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1630                                             IXGBE_EEPROM_OPCODE_BITS);
1631                 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1632                 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1633                         break;
1634 
1635                 usec_delay(5);
1636                 ixgbe_standby_eeprom(hw);
1637         };
1638 
1639         /*
1640          * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1641          * devices (and only 0-5mSec on 5V devices)
1642          */
1643         if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1644                 DEBUGOUT("SPI EEPROM Status error\n");
1645                 status = IXGBE_ERR_EEPROM;
1646         }
1647 
1648         return status;
1649 }
1650 
1651 /**
1652  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1653  *  @hw: pointer to hardware structure
1654  **/
1655 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1656 {
1657         u32 eec;
1658 
1659         DEBUGFUNC("ixgbe_standby_eeprom");
1660 
1661         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1662 
1663         /* Toggle CS to flush commands */
1664         eec |= IXGBE_EEC_CS;
1665         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1666         IXGBE_WRITE_FLUSH(hw);
1667         usec_delay(1);
1668         eec &= ~IXGBE_EEC_CS;
1669         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1670         IXGBE_WRITE_FLUSH(hw);
1671         usec_delay(1);
1672 }
1673 
1674 /**
1675  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1676  *  @hw: pointer to hardware structure
1677  *  @data: data to send to the EEPROM
1678  *  @count: number of bits to shift out
1679  **/
1680 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1681                                         u16 count)
1682 {
1683         u32 eec;
1684         u32 mask;
1685         u32 i;
1686 
1687         DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1688 
1689         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1690 
1691         /*
1692          * Mask is used to shift "count" bits of "data" out to the EEPROM
1693          * one bit at a time.  Determine the starting bit based on count
1694          */
1695         mask = 0x01 << (count - 1);
1696 
1697         for (i = 0; i < count; i++) {
1698                 /*
1699                  * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1700                  * "1", and then raising and then lowering the clock (the SK
1701                  * bit controls the clock input to the EEPROM).  A "0" is
1702                  * shifted out to the EEPROM by setting "DI" to "0" and then
1703                  * raising and then lowering the clock.
1704                  */
1705                 if (data & mask)
1706                         eec |= IXGBE_EEC_DI;
1707                 else
1708                         eec &= ~IXGBE_EEC_DI;
1709 
1710                 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1711                 IXGBE_WRITE_FLUSH(hw);
1712 
1713                 usec_delay(1);
1714 
1715                 ixgbe_raise_eeprom_clk(hw, &eec);
1716                 ixgbe_lower_eeprom_clk(hw, &eec);
1717 
1718                 /*
1719                  * Shift mask to signify next bit of data to shift in to the
1720                  * EEPROM
1721                  */
1722                 mask = mask >> 1;
1723         };
1724 
1725         /* We leave the "DI" bit set to "0" when we leave this routine. */
1726         eec &= ~IXGBE_EEC_DI;
1727         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1728         IXGBE_WRITE_FLUSH(hw);
1729 }
1730 
1731 /**
1732  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1733  *  @hw: pointer to hardware structure
1734  **/
1735 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1736 {
1737         u32 eec;
1738         u32 i;
1739         u16 data = 0;
1740 
1741         DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1742 
1743         /*
1744          * In order to read a register from the EEPROM, we need to shift
1745          * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1746          * the clock input to the EEPROM (setting the SK bit), and then reading
1747          * the value of the "DO" bit.  During this "shifting in" process the
1748          * "DI" bit should always be clear.
1749          */
1750         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1751 
1752         eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1753 
1754         for (i = 0; i < count; i++) {
1755                 data = data << 1;
1756                 ixgbe_raise_eeprom_clk(hw, &eec);
1757 
1758                 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1759 
1760                 eec &= ~(IXGBE_EEC_DI);
1761                 if (eec & IXGBE_EEC_DO)
1762                         data |= 1;
1763 
1764                 ixgbe_lower_eeprom_clk(hw, &eec);
1765         }
1766 
1767         return data;
1768 }
1769 
1770 /**
1771  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1772  *  @hw: pointer to hardware structure
1773  *  @eec: EEC register's current value
1774  **/
1775 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1776 {
1777         DEBUGFUNC("ixgbe_raise_eeprom_clk");
1778 
1779         /*
1780          * Raise the clock input to the EEPROM
1781          * (setting the SK bit), then delay
1782          */
1783         *eec = *eec | IXGBE_EEC_SK;
1784         IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1785         IXGBE_WRITE_FLUSH(hw);
1786         usec_delay(1);
1787 }
1788 
1789 /**
1790  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1791  *  @hw: pointer to hardware structure
1792  *  @eecd: EECD's current value
1793  **/
1794 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1795 {
1796         DEBUGFUNC("ixgbe_lower_eeprom_clk");
1797 
1798         /*
1799          * Lower the clock input to the EEPROM (clearing the SK bit), then
1800          * delay
1801          */
1802         *eec = *eec & ~IXGBE_EEC_SK;
1803         IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1804         IXGBE_WRITE_FLUSH(hw);
1805         usec_delay(1);
1806 }
1807 
1808 /**
1809  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1810  *  @hw: pointer to hardware structure
1811  **/
1812 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1813 {
1814         u32 eec;
1815 
1816         DEBUGFUNC("ixgbe_release_eeprom");
1817 
1818         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1819 
1820         eec |= IXGBE_EEC_CS;  /* Pull CS high */
1821         eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1822 
1823         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1824         IXGBE_WRITE_FLUSH(hw);
1825 
1826         usec_delay(1);
1827 
1828         /* Stop requesting EEPROM access */
1829         eec &= ~IXGBE_EEC_REQ;
1830         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1831 
1832         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1833 
1834         /* Delay before attempt to obtain semaphore again to allow FW access */
1835         msec_delay(hw->eeprom.semaphore_delay);
1836 }
1837 
1838 /**
1839  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1840  *  @hw: pointer to hardware structure


1841  **/
1842 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1843 {
1844         u16 i;
1845         u16 j;
1846         u16 checksum = 0;
1847         u16 length = 0;
1848         u16 pointer = 0;
1849         u16 word = 0;
1850 
1851         DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1852 
1853         /* Include 0x0-0x3F in the checksum */
1854         for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1855                 if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1856                         DEBUGOUT("EEPROM read failed\n");
1857                         break;
1858                 }
1859                 checksum += word;
1860         }
1861 
1862         /* Include all data from pointers except for the fw pointer */
1863         for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1864                 hw->eeprom.ops.read(hw, i, &pointer);



1865 
1866                 /* Make sure the pointer seems valid */
1867                 if (pointer != 0xFFFF && pointer != 0) {
1868                         hw->eeprom.ops.read(hw, pointer, &length);
1869 
1870                         if (length != 0xFFFF && length != 0) {
1871                                 for (j = pointer+1; j <= pointer+length; j++) {
1872                                         hw->eeprom.ops.read(hw, j, &word);
1873                                         checksum += word;
1874                                 }








1875                         }

1876                 }
1877         }
1878 
1879         checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1880 
1881         return checksum;
1882 }
1883 
1884 /**
1885  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1886  *  @hw: pointer to hardware structure
1887  *  @checksum_val: calculated checksum
1888  *
1889  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1890  *  caller does not need checksum_val, the value can be NULL.
1891  **/
1892 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1893                                            u16 *checksum_val)
1894 {
1895         s32 status;
1896         u16 checksum;
1897         u16 read_checksum = 0;
1898 
1899         DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1900 
1901         /*
1902          * Read the first word from the EEPROM. If this times out or fails, do
1903          * not continue or we could be in for a very long wait while every
1904          * EEPROM read fails
1905          */
1906         status = hw->eeprom.ops.read(hw, 0, &checksum);




1907 
1908         if (status == IXGBE_SUCCESS) {
1909                 checksum = hw->eeprom.ops.calc_checksum(hw);

1910 
1911                 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1912 
1913                 /*
1914                  * Verify read checksum from EEPROM is the same as





1915                  * calculated checksum
1916                  */
1917                 if (read_checksum != checksum)
1918                         status = IXGBE_ERR_EEPROM_CHECKSUM;
1919 
1920                 /* If the user cares, return the calculated checksum */
1921                 if (checksum_val)
1922                         *checksum_val = checksum;
1923         } else {
1924                 DEBUGOUT("EEPROM read failed\n");
1925         }
1926 
1927         return status;
1928 }
1929 
1930 /**
1931  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1932  *  @hw: pointer to hardware structure
1933  **/
1934 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1935 {
1936         s32 status;
1937         u16 checksum;
1938 
1939         DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1940 
1941         /*
1942          * Read the first word from the EEPROM. If this times out or fails, do
1943          * not continue or we could be in for a very long wait while every
1944          * EEPROM read fails
1945          */
1946         status = hw->eeprom.ops.read(hw, 0, &checksum);
1947 
1948         if (status == IXGBE_SUCCESS) {
1949                 checksum = hw->eeprom.ops.calc_checksum(hw);
1950                 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1951                                               checksum);
1952         } else {
1953                 DEBUGOUT("EEPROM read failed\n");

1954         }
1955 


1956         return status;






1957 }
1958 
1959 /**
1960  *  ixgbe_validate_mac_addr - Validate MAC address
1961  *  @mac_addr: pointer to MAC address.
1962  *
1963  *  Tests a MAC address to ensure it is a valid Individual Address
1964  **/
1965 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1966 {
1967         s32 status = IXGBE_SUCCESS;
1968 
1969         DEBUGFUNC("ixgbe_validate_mac_addr");
1970 
1971         /* Make sure it is not a multicast address */
1972         if (IXGBE_IS_MULTICAST(mac_addr)) {
1973                 DEBUGOUT("MAC address is multicast\n");
1974                 status = IXGBE_ERR_INVALID_MAC_ADDR;
1975         /* Not a broadcast address */
1976         } else if (IXGBE_IS_BROADCAST(mac_addr)) {


1988 /**
1989  *  ixgbe_set_rar_generic - Set Rx address register
1990  *  @hw: pointer to hardware structure
1991  *  @index: Receive address register to write
1992  *  @addr: Address to put into receive address register
1993  *  @vmdq: VMDq "set" or "pool" index
1994  *  @enable_addr: set flag that address is active
1995  *
1996  *  Puts an ethernet address into a receive address register.
1997  **/
1998 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1999                           u32 enable_addr)
2000 {
2001         u32 rar_low, rar_high;
2002         u32 rar_entries = hw->mac.num_rar_entries;
2003 
2004         DEBUGFUNC("ixgbe_set_rar_generic");
2005 
2006         /* Make sure we are using a valid rar index range */
2007         if (index >= rar_entries) {
2008                 DEBUGOUT1("RAR index %d is out of range.\n", index);

2009                 return IXGBE_ERR_INVALID_ARGUMENT;
2010         }
2011 
2012         /* setup VMDq pool selection before this RAR gets enabled */
2013         hw->mac.ops.set_vmdq(hw, index, vmdq);
2014 
2015         /*
2016          * HW expects these in little endian so we reverse the byte
2017          * order from network order (big endian) to little endian
2018          */
2019         rar_low = ((u32)addr[0] |
2020                    ((u32)addr[1] << 8) |
2021                    ((u32)addr[2] << 16) |
2022                    ((u32)addr[3] << 24));
2023         /*
2024          * Some parts put the VMDq setting in the extra RAH bits,
2025          * so save everything except the lower 16 bits that hold part
2026          * of the address and the address valid bit.
2027          */
2028         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));


2037 
2038         return IXGBE_SUCCESS;
2039 }
2040 
2041 /**
2042  *  ixgbe_clear_rar_generic - Remove Rx address register
2043  *  @hw: pointer to hardware structure
2044  *  @index: Receive address register to write
2045  *
2046  *  Clears an ethernet address from a receive address register.
2047  **/
2048 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2049 {
2050         u32 rar_high;
2051         u32 rar_entries = hw->mac.num_rar_entries;
2052 
2053         DEBUGFUNC("ixgbe_clear_rar_generic");
2054 
2055         /* Make sure we are using a valid rar index range */
2056         if (index >= rar_entries) {
2057                 DEBUGOUT1("RAR index %d is out of range.\n", index);

2058                 return IXGBE_ERR_INVALID_ARGUMENT;
2059         }
2060 
2061         /*
2062          * Some parts put the VMDq setting in the extra RAH bits,
2063          * so save everything except the lower 16 bits that hold part
2064          * of the address and the address valid bit.
2065          */
2066         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2067         rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2068 
2069         IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2070         IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2071 
2072         /* clear VMDq pool/queue selection for this RAR */
2073         hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2074 
2075         return IXGBE_SUCCESS;
2076 }
2077 


2121         }
2122         hw->addr_ctrl.overflow_promisc = 0;
2123 
2124         hw->addr_ctrl.rar_used_count = 1;
2125 
2126         /* Zero out the other receive addresses. */
2127         DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2128         for (i = 1; i < rar_entries; i++) {
2129                 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2130                 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2131         }
2132 
2133         /* Clear the MTA */
2134         hw->addr_ctrl.mta_in_use = 0;
2135         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2136 
2137         DEBUGOUT(" Clearing MTA\n");
2138         for (i = 0; i < hw->mac.mcft_size; i++)
2139                 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2140 
2141         /* Should always be IXGBE_SUCCESS. */
2142         return ixgbe_init_uta_tables(hw);

2143 }
2144 
2145 /**
2146  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2147  *  @hw: pointer to hardware structure
2148  *  @addr: new address
2149  *
2150  *  Adds it to unused receive address register or goes into promiscuous mode.
2151  **/
2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2153 {
2154         u32 rar_entries = hw->mac.num_rar_entries;
2155         u32 rar;
2156 
2157         DEBUGFUNC("ixgbe_add_uc_addr");
2158 
2159         DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2160                   addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2161 
2162         /*


2334  **/
2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2336                                       u32 mc_addr_count, ixgbe_mc_addr_itr next,
2337                                       bool clear)
2338 {
2339         u32 i;
2340         u32 vmdq;
2341 
2342         DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2343 
2344         /*
2345          * Set the new number of MC addresses that we are being requested to
2346          * use.
2347          */
2348         hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2349         hw->addr_ctrl.mta_in_use = 0;
2350 
2351         /* Clear mta_shadow */
2352         if (clear) {
2353                 DEBUGOUT(" Clearing MTA\n");
2354                 (void) memset(&hw->mac.mta_shadow, 0,
2355                     sizeof(hw->mac.mta_shadow));
2356         }
2357 
2358         /* Update mta_shadow */
2359         for (i = 0; i < mc_addr_count; i++) {
2360                 DEBUGOUT(" Adding the multicast addresses:\n");
2361                 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2362         }
2363 
2364         /* Enable mta */
2365         for (i = 0; i < hw->mac.mcft_size; i++)
2366                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2367                                       hw->mac.mta_shadow[i]);
2368 
2369         if (hw->addr_ctrl.mta_in_use > 0)
2370                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2371                                 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2372 
2373         DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2374         return IXGBE_SUCCESS;
2375 }


2480                  * isn't a way to advertise that we are capable of RX
2481                  * Pause ONLY, we will advertise that we support both
2482                  * symmetric and asymmetric Rx PAUSE.  Later, we will
2483                  * disable the adapter's ability to send PAUSE frames.
2484                  */
2485                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2486                 break;
2487         case ixgbe_fc_tx_pause:
2488                 /*
2489                  * Tx Flow control is enabled, and Rx Flow control is
2490                  * disabled by software override.
2491                  */
2492                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2493                 break;
2494         case ixgbe_fc_full:
2495                 /* Flow control (both Rx and Tx) is enabled by SW override. */
2496                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2497                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2498                 break;
2499         default:
2500                 DEBUGOUT("Flow control param set incorrectly\n");

2501                 ret_val = IXGBE_ERR_CONFIG;
2502                 goto out;

2503         }
2504 
2505         /* Set 802.3x based flow control settings. */
2506         mflcn_reg |= IXGBE_MFLCN_DPF;
2507         IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2508         IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2509 
2510 
2511         /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2512         for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2513                 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2514                     hw->fc.high_water[i]) {
2515                         fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2516                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2517                         fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2518                 } else {
2519                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2520                         /*
2521                          * In order to prevent Tx hangs when the internal Tx
2522                          * switch is enabled we must set the high water mark
2523                          * to the maximum FCRTH value.  This allows the Tx
2524                          * switch to function even under heavy Rx workloads.

2525                          */
2526                         fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2527                 }
2528 
2529                 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2530         }
2531 
2532         /* Configure pause time (2 TCs per register) */
2533         reg = hw->fc.pause_time * 0x00010001;
2534         for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2535                 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2536 
2537         /* Configure flow control refresh threshold value */
2538         IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2539 
2540 out:
2541         return ret_val;
2542 }
2543 
2544 /**
2545  *  ixgbe_negotiate_fc - Negotiate flow control
2546  *  @hw: pointer to hardware structure
2547  *  @adv_reg: flow control advertised settings
2548  *  @lp_reg: link partner's flow control settings
2549  *  @adv_sym: symmetric pause bit in advertisement
2550  *  @adv_asm: asymmetric pause bit in advertisement
2551  *  @lp_sym: symmetric pause bit in link partner advertisement
2552  *  @lp_asm: asymmetric pause bit in link partner advertisement
2553  *
2554  *  Find the intersection between advertised settings and link partner's
2555  *  advertised settings
2556  **/
2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2558                               u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2559 {
2560         if ((!(adv_reg)) ||  (!(lp_reg)))




2561                 return IXGBE_ERR_FC_NOT_NEGOTIATED;

2562 
2563         if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2564                 /*
2565                  * Now we need to check if the user selected Rx ONLY
2566                  * of pause frames.  In this case, we had to advertise
2567                  * FULL flow control because we could not advertise RX
2568                  * ONLY. Hence, we must now check to see if we need to
2569                  * turn OFF the TRANSMISSION of PAUSE frames.
2570                  */
2571                 if (hw->fc.requested_mode == ixgbe_fc_full) {
2572                         hw->fc.current_mode = ixgbe_fc_full;
2573                         DEBUGOUT("Flow Control = FULL.\n");
2574                 } else {
2575                         hw->fc.current_mode = ixgbe_fc_rx_pause;
2576                         DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2577                 }
2578         } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2579                    (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2580                 hw->fc.current_mode = ixgbe_fc_tx_pause;
2581                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");


2592 
2593 /**
2594  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2595  *  @hw: pointer to hardware structure
2596  *
2597  *  Enable flow control according on 1 gig fiber.
2598  **/
2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2600 {
2601         u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2602         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2603 
2604         /*
2605          * On multispeed fiber at 1g, bail out if
2606          * - link is up but AN did not complete, or if
2607          * - link is up and AN completed but timed out
2608          */
2609 
2610         linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2611         if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2612             (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))

2613                 goto out;

2614 
2615         pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2616         pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2617 
2618         ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2619                                       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2620                                       IXGBE_PCS1GANA_ASM_PAUSE,
2621                                       IXGBE_PCS1GANA_SYM_PAUSE,
2622                                       IXGBE_PCS1GANA_ASM_PAUSE);
2623 
2624 out:
2625         return ret_val;
2626 }
2627 
2628 /**
2629  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2630  *  @hw: pointer to hardware structure
2631  *
2632  *  Enable flow control according to IEEE clause 37.
2633  **/
2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2635 {
2636         u32 links2, anlp1_reg, autoc_reg, links;
2637         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2638 
2639         /*
2640          * On backplane, bail out if
2641          * - backplane autoneg was not completed, or if
2642          * - we are 82599 and link partner is not AN enabled
2643          */
2644         links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2645         if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)

2646                 goto out;

2647 
2648         if (hw->mac.type == ixgbe_mac_82599EB) {
2649                 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2650                 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)

2651                         goto out;
2652         }

2653         /*
2654          * Read the 10g AN autoc and LP ability registers and resolve
2655          * local flow control settings accordingly
2656          */
2657         autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2658         anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2659 
2660         ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2661                 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2662                 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2663 
2664 out:
2665         return ret_val;
2666 }
2667 
2668 /**
2669  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2670  *  @hw: pointer to hardware structure
2671  *
2672  *  Enable flow control according to IEEE clause 37.


2693  *  ixgbe_fc_autoneg - Configure flow control
2694  *  @hw: pointer to hardware structure
2695  *
2696  *  Compares our advertised flow control capabilities to those advertised by
2697  *  our link partner, and determines the proper flow control mode to use.
2698  **/
2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2700 {
2701         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2702         ixgbe_link_speed speed;
2703         bool link_up;
2704 
2705         DEBUGFUNC("ixgbe_fc_autoneg");
2706 
2707         /*
2708          * AN should have completed when the cable was plugged in.
2709          * Look for reasons to bail out.  Bail out if:
2710          * - FC autoneg is disabled, or if
2711          * - link is not up.
2712          */
2713         if (hw->fc.disable_fc_autoneg)


2714                 goto out;

2715 
2716         hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2717         if (!link_up)

2718                 goto out;

2719 
2720         switch (hw->phy.media_type) {
2721         /* Autoneg flow control on fiber adapters */


2722         case ixgbe_media_type_fiber:
2723                 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2724                         ret_val = ixgbe_fc_autoneg_fiber(hw);
2725                 break;
2726 
2727         /* Autoneg flow control on backplane adapters */
2728         case ixgbe_media_type_backplane:
2729                 ret_val = ixgbe_fc_autoneg_backplane(hw);
2730                 break;
2731 
2732         /* Autoneg flow control on copper adapters */
2733         case ixgbe_media_type_copper:
2734                 if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2735                         ret_val = ixgbe_fc_autoneg_copper(hw);
2736                 break;
2737 
2738         default:
2739                 break;
2740         }
2741 
2742 out:
2743         if (ret_val == IXGBE_SUCCESS) {
2744                 hw->fc.fc_was_autonegged = TRUE;
2745         } else {
2746                 hw->fc.fc_was_autonegged = FALSE;
2747                 hw->fc.current_mode = hw->fc.requested_mode;
2748         }
2749 }
2750 















































2751 /**
2752  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2753  *  @hw: pointer to hardware structure
2754  *
2755  *  Disables PCI-Express master access and verifies there are no pending
2756  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2757  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2758  *  is returned signifying master requests disabled.
2759  **/
2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2761 {
2762         s32 status = IXGBE_SUCCESS;
2763         u32 i;

2764 
2765         DEBUGFUNC("ixgbe_disable_pcie_master");
2766 
2767         /* Always set this bit to ensure any future transactions are blocked */
2768         IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2769 
2770         /* Exit if master requets are blocked */
2771         if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))

2772                 goto out;
2773 
2774         /* Poll for master request bit to clear */
2775         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2776                 usec_delay(100);
2777                 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2778                         goto out;
2779         }
2780 
2781         /*
2782          * Two consecutive resets are required via CTRL.RST per datasheet
2783          * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2784          * of this need.  The first reset prevents new master requests from
2785          * being issued by our device.  We then must wait 1usec or more for any
2786          * remaining completions from the PCIe bus to trickle in, and then reset
2787          * again to clear out any effects they may have had on our device.
2788          */
2789         DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2790         hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2791 



2792         /*
2793          * Before proceeding, make sure that the PCIe block does not have
2794          * transactions pending.
2795          */
2796         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {

2797                 usec_delay(100);
2798                 if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2799                     IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2800                         goto out;


2801         }
2802 
2803         DEBUGOUT("PCIe transaction pending bit also did not clear.\n");

2804         status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2805 
2806 out:
2807         return status;
2808 }
2809 
2810 /**
2811  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2812  *  @hw: pointer to hardware structure
2813  *  @mask: Mask to specify which semaphore to acquire
2814  *
2815  *  Acquires the SWFW semaphore through the GSSR register for the specified
2816  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2817  **/
2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2819 {
2820         u32 gssr;
2821         u32 swmask = mask;
2822         u32 fwmask = mask << 5;
2823         s32 timeout = 200;

2824 
2825         DEBUGFUNC("ixgbe_acquire_swfw_sync");
2826 
2827         while (timeout) {
2828                 /*
2829                  * SW EEPROM semaphore bit is used for access to all
2830                  * SW_FW_SYNC/GSSR bits (not just EEPROM)
2831                  */
2832                 if (ixgbe_get_eeprom_semaphore(hw))
2833                         return IXGBE_ERR_SWFW_SYNC;
2834 
2835                 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2836                 if (!(gssr & (fwmask | swmask)))
2837                         break;
2838 
2839                 /*
2840                  * Firmware currently using resource (fwmask) or other software
2841                  * thread currently using resource (swmask)
2842                  */
2843                 ixgbe_release_eeprom_semaphore(hw);




2844                 msec_delay(5);
2845                 timeout--;
2846         }
2847 
2848         if (!timeout) {
2849                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2850                 return IXGBE_ERR_SWFW_SYNC;
2851         }
2852 
2853         gssr |= swmask;
2854         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

2855 
2856         ixgbe_release_eeprom_semaphore(hw);
2857         return IXGBE_SUCCESS;
2858 }
2859 
2860 /**
2861  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2862  *  @hw: pointer to hardware structure
2863  *  @mask: Mask to specify which semaphore to release
2864  *
2865  *  Releases the SWFW semaphore through the GSSR register for the specified
2866  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2867  **/
2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2869 {
2870         u32 gssr;
2871         u32 swmask = mask;
2872 
2873         DEBUGFUNC("ixgbe_release_swfw_sync");
2874 
2875         (void) ixgbe_get_eeprom_semaphore(hw);
2876 
2877         gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2878         gssr &= ~swmask;
2879         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2880 
2881         ixgbe_release_eeprom_semaphore(hw);
2882 }
2883 
2884 /**
2885  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2886  *  @hw: pointer to hardware structure
2887  *
2888  *  Stops the receive data path and waits for the HW to internally empty
2889  *  the Rx security block
2890  **/
2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2892 {
2893 #define IXGBE_MAX_SECRX_POLL 40
2894 
2895         int i;


2902         secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2903         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2904         for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2905                 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2906                 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2907                         break;
2908                 else
2909                         /* Use interrupt-safe sleep just in case */
2910                         usec_delay(1000);
2911         }
2912 
2913         /* For informational purposes only */
2914         if (i >= IXGBE_MAX_SECRX_POLL)
2915                 DEBUGOUT("Rx unit being enabled before security "
2916                          "path fully disabled.  Continuing with init.\n");
2917 
2918         return IXGBE_SUCCESS;
2919 }
2920 
2921 /**































2922  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2923  *  @hw: pointer to hardware structure
2924  *
2925  *  Enables the receive data path.
2926  **/
2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2928 {
2929         int secrxreg;
2930 
2931         DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2932 
2933         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2934         secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2935         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2936         IXGBE_WRITE_FLUSH(hw);
2937 
2938         return IXGBE_SUCCESS;
2939 }
2940 
2941 /**
2942  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2943  *  @hw: pointer to hardware structure
2944  *  @regval: register value to write to RXCTRL
2945  *
2946  *  Enables the Rx DMA unit
2947  **/
2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2949 {
2950         DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2951 
2952         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);



2953 
2954         return IXGBE_SUCCESS;
2955 }
2956 
2957 /**
2958  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2959  *  @hw: pointer to hardware structure
2960  *  @index: led number to blink
2961  **/
2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2963 {
2964         ixgbe_link_speed speed = 0;
2965         bool link_up = 0;
2966         u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);


2968 
2969         DEBUGFUNC("ixgbe_blink_led_start_generic");
2970 
2971         /*
2972          * Link must be up to auto-blink the LEDs;
2973          * Force it if link is down.
2974          */
2975         hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2976 
2977         if (!link_up) {




2978                 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2979                 autoc_reg |= IXGBE_AUTOC_FLU;
2980                 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);




2981                 IXGBE_WRITE_FLUSH(hw);
2982                 msec_delay(10);
2983         }
2984 
2985         led_reg &= ~IXGBE_LED_MODE_MASK(index);
2986         led_reg |= IXGBE_LED_BLINK(index);
2987         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2988         IXGBE_WRITE_FLUSH(hw);
2989 
2990         return IXGBE_SUCCESS;

2991 }
2992 
2993 /**
2994  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2995  *  @hw: pointer to hardware structure
2996  *  @index: led number to stop blinking
2997  **/
2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2999 {
3000         u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3001         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);


3002 
3003         DEBUGFUNC("ixgbe_blink_led_stop_generic");
3004 



3005 
3006         autoc_reg &= ~IXGBE_AUTOC_FLU;
3007         autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3008         IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3009 




3010         led_reg &= ~IXGBE_LED_MODE_MASK(index);
3011         led_reg &= ~IXGBE_LED_BLINK(index);
3012         led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3013         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3014         IXGBE_WRITE_FLUSH(hw);
3015 
3016         return IXGBE_SUCCESS;

3017 }
3018 
3019 /**
3020  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3021  *  @hw: pointer to hardware structure
3022  *  @san_mac_offset: SAN MAC address offset
3023  *
3024  *  This function will read the EEPROM location for the SAN MAC address
3025  *  pointer, and returns the value at that location.  This is used in both
3026  *  get and set mac_addr routines.
3027  **/
3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3029                                          u16 *san_mac_offset)
3030 {


3031         DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3032 
3033         /*
3034          * First read the EEPROM pointer to see if the MAC addresses are
3035          * available.
3036          */
3037         hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);






3038 
3039         return IXGBE_SUCCESS;
3040 }
3041 
3042 /**
3043  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3044  *  @hw: pointer to hardware structure
3045  *  @san_mac_addr: SAN MAC address
3046  *
3047  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3048  *  per-port, so set_lan_id() must be called before reading the addresses.
3049  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3050  *  upon for non-SFP connections, so we must call it here.
3051  **/
3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3053 {
3054         u16 san_mac_data, san_mac_offset;
3055         u8 i;

3056 
3057         DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3058 
3059         /*
3060          * First read the EEPROM pointer to see if the MAC addresses are
3061          * available.  If they're not, no point in calling set_lan_id() here.
3062          */
3063         (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3064 
3065         if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3066                 /*
3067                  * No addresses available in this EEPROM.  It's not an
3068                  * error though, so just wipe the local address and return.
3069                  */
3070                 for (i = 0; i < 6; i++)
3071                         san_mac_addr[i] = 0xFF;
3072 
3073                 goto san_mac_addr_out;
3074         }
3075 
3076         /* make sure we know which port we need to program */
3077         hw->mac.ops.set_lan_id(hw);
3078         /* apply the port offset to the address offset */
3079         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3080                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3081         for (i = 0; i < 3; i++) {
3082                 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);







3083                 san_mac_addr[i * 2] = (u8)(san_mac_data);
3084                 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3085                 san_mac_offset++;
3086         }

3087 
3088 san_mac_addr_out:






3089         return IXGBE_SUCCESS;
3090 }
3091 
3092 /**
3093  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3094  *  @hw: pointer to hardware structure
3095  *  @san_mac_addr: SAN MAC address
3096  *
3097  *  Write a SAN MAC address to the EEPROM.
3098  **/
3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3100 {
3101         s32 status = IXGBE_SUCCESS;
3102         u16 san_mac_data, san_mac_offset;
3103         u8 i;
3104 
3105         DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3106 
3107         /* Look for SAN mac address pointer.  If not defined, return */
3108         (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);


3109 
3110         if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3111                 status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3112                 goto san_mac_addr_out;
3113         }
3114 
3115         /* Make sure we know which port we need to write */
3116         hw->mac.ops.set_lan_id(hw);
3117         /* Apply the port offset to the address offset */
3118         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3119                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3120 
3121         for (i = 0; i < 3; i++) {
3122                 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3123                 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3124                 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3125                 san_mac_offset++;
3126         }
3127 
3128 san_mac_addr_out:
3129         return status;
3130 }
3131 
3132 /**
3133  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3134  *  @hw: pointer to hardware structure
3135  *
3136  *  Read PCIe configuration space, and get the MSI-X vector count from
3137  *  the capabilities table.
3138  **/
3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3140 {
3141         u16 msix_count = 1;
3142         u16 max_msix_count;
3143         u16 pcie_offset;
3144 
3145         switch (hw->mac.type) {
3146         case ixgbe_mac_82598EB:
3147                 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3148                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3149                 break;
3150         case ixgbe_mac_82599EB:
3151         case ixgbe_mac_X540:


3152                 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3153                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3154                 break;
3155         default:
3156                 return msix_count;
3157         }
3158 
3159         DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3160         msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);


3161         msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3162 
3163         /* MSI-X count is zero-based in HW */
3164         msix_count++;
3165 
3166         if (msix_count > max_msix_count)
3167                 msix_count = max_msix_count;
3168 
3169         return msix_count;
3170 }
3171 
3172 /**
3173  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3174  *  @hw: pointer to hardware structure
3175  *  @addr: Address to put into receive address register
3176  *  @vmdq: VMDq pool to assign
3177  *
3178  *  Puts an ethernet address into a receive address register, or
3179  *  finds the rar that it is aleady in; adds to the pool list
3180  **/
3181 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3182 {
3183         static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3184         u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3185         u32 rar;
3186         u32 rar_low, rar_high;
3187         u32 addr_low, addr_high;
3188 
3189         DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3190 
3191         /* swap bytes for HW little endian */
3192         addr_low  = addr[0] | (addr[1] << 8)
3193                             | (addr[2] << 16)
3194                             | (addr[3] << 24);
3195         addr_high = addr[4] | (addr[5] << 8);
3196 
3197         /*
3198          * Either find the mac_id in rar or find the first empty space.
3199          * rar_highwater points to just after the highest currently used
3200          * rar in order to shorten the search.  It grows when we add a new
3201          * rar to the top.
3202          */
3203         for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3204                 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3205 
3206                 if (((IXGBE_RAH_AV & rar_high) == 0)
3207                     && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3208                         first_empty_rar = rar;
3209                 } else if ((rar_high & 0xFFFF) == addr_high) {
3210                         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3211                         if (rar_low == addr_low)
3212                                 break;    /* found it already in the rars */
3213                 }
3214         }
3215 
3216         if (rar < hw->mac.rar_highwater) {
3217                 /* already there so just add to the pool bits */
3218                 (void) ixgbe_set_vmdq(hw, rar, vmdq);
3219         } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3220                 /* stick it into first empty RAR slot we found */
3221                 rar = first_empty_rar;
3222                 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3223         } else if (rar == hw->mac.rar_highwater) {
3224                 /* add it to the top of the list and inc the highwater mark */
3225                 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3226                 hw->mac.rar_highwater++;
3227         } else if (rar >= hw->mac.num_rar_entries) {
3228                 return IXGBE_ERR_INVALID_MAC_ADDR;
3229         }
3230 
3231         /*
3232          * If we found rar[0], make sure the default pool bit (we use pool 0)
3233          * remains cleared to be sure default pool packets will get delivered
3234          */
3235         if (rar == 0)
3236                 (void) ixgbe_clear_vmdq(hw, rar, 0);
3237 
3238         return rar;
3239 }
3240 
3241 /**
3242  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3243  *  @hw: pointer to hardware struct
3244  *  @rar: receive address register index to disassociate
3245  *  @vmdq: VMDq pool index to remove from the rar
3246  **/
3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3248 {
3249         u32 mpsar_lo, mpsar_hi;
3250         u32 rar_entries = hw->mac.num_rar_entries;
3251 
3252         DEBUGFUNC("ixgbe_clear_vmdq_generic");
3253 
3254         /* Make sure we are using a valid rar index range */
3255         if (rar >= rar_entries) {
3256                 DEBUGOUT1("RAR index %d is out of range.\n", rar);

3257                 return IXGBE_ERR_INVALID_ARGUMENT;
3258         }
3259 
3260         mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3261         mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3262 



3263         if (!mpsar_lo && !mpsar_hi)
3264                 goto done;
3265 
3266         if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3267                 if (mpsar_lo) {
3268                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3269                         mpsar_lo = 0;
3270                 }
3271                 if (mpsar_hi) {
3272                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3273                         mpsar_hi = 0;
3274                 }
3275         } else if (vmdq < 32) {
3276                 mpsar_lo &= ~(1 << vmdq);
3277                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3278         } else {
3279                 mpsar_hi &= ~(1 << (vmdq - 32));
3280                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3281         }
3282 


3285                 hw->mac.ops.clear_rar(hw, rar);
3286 done:
3287         return IXGBE_SUCCESS;
3288 }
3289 
3290 /**
3291  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3292  *  @hw: pointer to hardware struct
3293  *  @rar: receive address register index to associate with a VMDq index
3294  *  @vmdq: VMDq pool index
3295  **/
3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3297 {
3298         u32 mpsar;
3299         u32 rar_entries = hw->mac.num_rar_entries;
3300 
3301         DEBUGFUNC("ixgbe_set_vmdq_generic");
3302 
3303         /* Make sure we are using a valid rar index range */
3304         if (rar >= rar_entries) {
3305                 DEBUGOUT1("RAR index %d is out of range.\n", rar);

3306                 return IXGBE_ERR_INVALID_ARGUMENT;
3307         }
3308 
3309         if (vmdq < 32) {
3310                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3311                 mpsar |= 1 << vmdq;
3312                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3313         } else {
3314                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3315                 mpsar |= 1 << (vmdq - 32);
3316                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3317         }
3318         return IXGBE_SUCCESS;
3319 }
3320 
3321 /**
3322  *  This function should only be involved in the IOV mode.
3323  *  In IOV mode, Default pool is next pool after the number of
3324  *  VFs advertized and not 0.
3325  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]


3384           * Search for the vlan id in the VLVF entries. Save off the first empty
3385           * slot found along the way
3386           */
3387         for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3388                 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3389                 if (!bits && !(first_empty_slot))
3390                         first_empty_slot = regindex;
3391                 else if ((bits & 0x0FFF) == vlan)
3392                         break;
3393         }
3394 
3395         /*
3396           * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3397           * in the VLVF. Else use the first empty VLVF register for this
3398           * vlan id.
3399           */
3400         if (regindex >= IXGBE_VLVF_ENTRIES) {
3401                 if (first_empty_slot)
3402                         regindex = first_empty_slot;
3403                 else {
3404                         DEBUGOUT("No space in VLVF.\n");

3405                         regindex = IXGBE_ERR_NO_SPACE;
3406                 }
3407         }
3408 
3409         return regindex;
3410 }
3411 
3412 /**
3413  *  ixgbe_set_vfta_generic - Set VLAN filter table
3414  *  @hw: pointer to hardware structure
3415  *  @vlan: VLAN id to write to VLAN filter
3416  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3417  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3418  *
3419  *  Turn on/off specified VLAN in the VLAN filter table.
3420  **/
3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3422                            bool vlan_on)
3423 {
3424         s32 regindex;


3619  **/
3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3621                                  bool *link_up, bool link_up_wait_to_complete)
3622 {
3623         u32 links_reg, links_orig;
3624         u32 i;
3625 
3626         DEBUGFUNC("ixgbe_check_mac_link_generic");
3627 
3628         /* clear the old state */
3629         links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3630 
3631         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3632 
3633         if (links_orig != links_reg) {
3634                 DEBUGOUT2("LINKS changed from %08X to %08X\n",
3635                           links_orig, links_reg);
3636         }
3637 
3638         if (link_up_wait_to_complete) {
3639                 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3640                         if (links_reg & IXGBE_LINKS_UP) {
3641                                 *link_up = TRUE;
3642                                 break;
3643                         } else {
3644                                 *link_up = FALSE;
3645                         }
3646                         msec_delay(100);
3647                         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3648                 }
3649         } else {
3650                 if (links_reg & IXGBE_LINKS_UP)
3651                         *link_up = TRUE;
3652                 else
3653                         *link_up = FALSE;
3654         }
3655 
3656         if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3657             IXGBE_LINKS_SPEED_10G_82599)
3658                 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3659         else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3660                  IXGBE_LINKS_SPEED_1G_82599)




3661                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3662         else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3663                  IXGBE_LINKS_SPEED_100_82599)
3664                 *speed = IXGBE_LINK_SPEED_100_FULL;
3665         else





3666                 *speed = IXGBE_LINK_SPEED_UNKNOWN;

3667 
3668         return IXGBE_SUCCESS;
3669 }
3670 
3671 /**
3672  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3673  *  the EEPROM
3674  *  @hw: pointer to hardware structure
3675  *  @wwnn_prefix: the alternative WWNN prefix
3676  *  @wwpn_prefix: the alternative WWPN prefix
3677  *
3678  *  This function will read the EEPROM from the alternative SAN MAC address
3679  *  block to check the support for the alternative WWNN/WWPN prefix support.
3680  **/
3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3682                                  u16 *wwpn_prefix)
3683 {
3684         u16 offset, caps;
3685         u16 alt_san_mac_blk_offset;
3686 
3687         DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3688 
3689         /* clear output first */
3690         *wwnn_prefix = 0xFFFF;
3691         *wwpn_prefix = 0xFFFF;
3692 
3693         /* check if alternative SAN MAC is supported */
3694         hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3695                             &alt_san_mac_blk_offset);

3696 
3697         if ((alt_san_mac_blk_offset == 0) ||
3698             (alt_san_mac_blk_offset == 0xFFFF))
3699                 goto wwn_prefix_out;
3700 
3701         /* check capability in alternative san mac address block */
3702         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3703         hw->eeprom.ops.read(hw, offset, &caps);

3704         if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3705                 goto wwn_prefix_out;
3706 
3707         /* get the corresponding prefix for WWNN/WWPN */
3708         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3709         hw->eeprom.ops.read(hw, offset, wwnn_prefix);



3710 
3711         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3712         hw->eeprom.ops.read(hw, offset, wwpn_prefix);

3713 
3714 wwn_prefix_out:
3715         return IXGBE_SUCCESS;





3716 }
3717 
3718 /**
3719  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3720  *  @hw: pointer to hardware structure
3721  *  @bs: the fcoe boot status
3722  *
3723  *  This function will read the FCOE boot status from the iSCSI FCOE block
3724  **/
3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3726 {
3727         u16 offset, caps, flags;
3728         s32 status;
3729 
3730         DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3731 
3732         /* clear output first */
3733         *bs = ixgbe_fcoe_bootstatus_unavailable;
3734 
3735         /* check if FCOE IBA block is present */


3793 
3794         /*
3795          * The PF should be allowed to spoof so that it can support
3796          * emulation mode NICs.  Do not set the bits assigned to the PF
3797          */
3798         pfvfspoof &= (1 << pf_target_shift) - 1;
3799         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3800 
3801         /*
3802          * Remaining pools belong to the PF so they do not need to have
3803          * anti-spoofing enabled.
3804          */
3805         for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3806                 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3807 }
3808 
3809 /**
3810  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3811  *  @hw: pointer to hardware structure
3812  *  @enable: enable or disable switch for VLAN anti-spoofing
3813  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3814  *
3815  **/
3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3817 {
3818         int vf_target_reg = vf >> 3;
3819         int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3820         u32 pfvfspoof;
3821 
3822         if (hw->mac.type == ixgbe_mac_82598EB)
3823                 return;
3824 
3825         pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3826         if (enable)
3827                 pfvfspoof |= (1 << vf_target_shift);
3828         else
3829                 pfvfspoof &= ~(1 << vf_target_shift);
3830         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3831 }
3832 
3833 /**


3865                 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3866                 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3867         }
3868 
3869         for (i = 0; i < hw->mac.max_rx_queues; i++) {
3870                 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3871                 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3872                           IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3873                 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3874         }
3875 
3876 }
3877 
3878 /**
3879  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3880  *  @buffer: pointer to EEPROM
3881  *  @length: size of EEPROM to calculate a checksum for
3882  *  Calculates the checksum for some buffer on a specified length.  The
3883  *  checksum calculated is returned.
3884  **/
3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3886 {
3887         u32 i;
3888         u8 sum = 0;
3889 
3890         DEBUGFUNC("ixgbe_calculate_checksum");
3891 
3892         if (!buffer)
3893                 return 0;
3894 
3895         for (i = 0; i < length; i++)
3896                 sum += buffer[i];
3897 
3898         return (u8) (0 - sum);
3899 }
3900 
3901 /**
3902  *  ixgbe_host_interface_command - Issue command to manageability block
3903  *  @hw: pointer to the HW structure
3904  *  @buffer: contains the command to write and where the return status will
3905  *   be placed
3906  *  @length: length of buffer, must be multiple of 4 bytes







3907  *
3908  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
3909  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3910  **/
3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3912                                         u32 length)
3913 {
3914         u32 hicr, i, bi;
3915         u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3916         u8 buf_len, dword_len;

3917 
3918         s32 ret_val = IXGBE_SUCCESS;
3919 
3920         DEBUGFUNC("ixgbe_host_interface_command");
3921 
3922         if (length == 0 || length & 0x3 ||
3923             length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3924                 DEBUGOUT("Buffer length failure.\n");
3925                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3926                 goto out;
3927         }



3928 
3929         /* Check that the host interface is enabled. */
3930         hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3931         if ((hicr & IXGBE_HICR_EN) == 0) {
3932                 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3933                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3934                 goto out;
3935         }
3936 
3937         /* Calculate length in DWORDs */





3938         dword_len = length >> 2;
3939 
3940         /*
3941          * The device driver writes the relevant command block
3942          * into the ram area.
3943          */
3944         for (i = 0; i < dword_len; i++)
3945                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3946                                       i, IXGBE_CPU_TO_LE32(buffer[i]));
3947 
3948         /* Setting this bit tells the ARC that a new command is pending. */
3949         IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3950 
3951         for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3952                 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3953                 if (!(hicr & IXGBE_HICR_C))
3954                         break;
3955                 msec_delay(1);
3956         }
3957 
3958         /* Check command successful completion. */
3959         if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3960             (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3961                 DEBUGOUT("Command has failed with no status valid.\n");
3962                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3963                 goto out;
3964         }
3965 



3966         /* Calculate length in DWORDs */
3967         dword_len = hdr_size >> 2;
3968 
3969         /* first pull in the header so we know the buffer length */
3970         for (bi = 0; bi < dword_len; bi++) {
3971                 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3972                 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3973         }
3974 
3975         /* If there is any thing in data position pull it in */
3976         buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3977         if (buf_len == 0)
3978                 goto out;
3979 
3980         if (length < (buf_len + hdr_size)) {
3981                 DEBUGOUT("Buffer not large enough for reply message.\n");
3982                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3983                 goto out;
3984         }
3985 
3986         /* Calculate length in DWORDs, add 3 for odd lengths */
3987         dword_len = (buf_len + 3) >> 2;
3988 
3989         /* Pull in the rest of the buffer (bi is where we left off)*/
3990         for (; bi <= dword_len; bi++) {
3991                 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3992                 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3993         }
3994 
3995 out:
3996         return ret_val;
3997 }
3998 
3999 /**
4000  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4001  *  @hw: pointer to the HW structure
4002  *  @maj: driver version major number
4003  *  @min: driver version minor number
4004  *  @build: driver version build number
4005  *  @sub: driver version sub build number
4006  *
4007  *  Sends driver version number to firmware through the manageability
4008  *  block.  On success return IXGBE_SUCCESS
4009  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4010  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4011  **/
4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4013                                  u8 build, u8 sub)
4014 {
4015         struct ixgbe_hic_drv_info fw_cmd;
4016         int i;


4022             != IXGBE_SUCCESS) {
4023                 ret_val = IXGBE_ERR_SWFW_SYNC;
4024                 goto out;
4025         }
4026 
4027         fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4028         fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4029         fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4030         fw_cmd.port_num = (u8)hw->bus.func;
4031         fw_cmd.ver_maj = maj;
4032         fw_cmd.ver_min = min;
4033         fw_cmd.ver_build = build;
4034         fw_cmd.ver_sub = sub;
4035         fw_cmd.hdr.checksum = 0;
4036         fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4037                                 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4038         fw_cmd.pad = 0;
4039         fw_cmd.pad2 = 0;
4040 
4041         for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4042                 /* LINTED */
4043                 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4044                                                        sizeof(fw_cmd));


4045                 if (ret_val != IXGBE_SUCCESS)
4046                         continue;
4047 
4048                 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4049                     FW_CEM_RESP_STATUS_SUCCESS)
4050                         ret_val = IXGBE_SUCCESS;
4051                 else
4052                         ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4053 
4054                 break;
4055         }
4056 
4057         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4058 out:
4059         return ret_val;
4060 }
4061 
4062 /**
4063  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4064  * @hw: pointer to hardware structure


4076         /* Reserve headroom */
4077         pbsize -= headroom;
4078 
4079         if (!num_pb)
4080                 num_pb = 1;
4081 
4082         /* Divide remaining packet buffer space amongst the number of packet
4083          * buffers requested using supplied strategy.
4084          */
4085         switch (strategy) {
4086         case PBA_STRATEGY_WEIGHTED:
4087                 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4088                  * buffer with 5/8 of the packet buffer space.
4089                  */
4090                 rxpktsize = (pbsize * 5) / (num_pb * 4);
4091                 pbsize -= rxpktsize * (num_pb / 2);
4092                 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4093                 for (; i < (num_pb / 2); i++)
4094                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4095                 /* Fall through to configure remaining packet buffers */
4096                 /* FALLTHRU */
4097         case PBA_STRATEGY_EQUAL:
4098                 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4099                 for (; i < num_pb; i++)
4100                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4101                 break;
4102         default:
4103                 break;
4104         }
4105 
4106         /* Only support an equally distributed Tx packet buffer strategy. */
4107         txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4108         txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4109         for (i = 0; i < num_pb; i++) {
4110                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4111                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4112         }
4113 
4114         /* Clear unused TCs, if any, to zero buffer size*/
4115         for (; i < IXGBE_MAX_PB; i++) {
4116                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4117                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4118                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4119         }
4120 }
4121 
4122 /**
4123  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4124  * @hw: pointer to the hardware structure
4125  *
4126  * The 82599 and x540 MACs can experience issues if TX work is still pending
4127  * when a reset occurs.  This function prevents this by flushing the PCIe
4128  * buffers on the system.
4129  **/
4130 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4131 {
4132         u32 gcr_ext, hlreg0;

4133 
4134         /*
4135          * If double reset is not requested then all transactions should
4136          * already be clear and as such there is no work to do
4137          */
4138         if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4139                 return;
4140 
4141         /*
4142          * Set loopback enable to prevent any transmits from being sent
4143          * should the link come up.  This assumes that the RXCTRL.RXEN bit
4144          * has already been cleared.
4145          */
4146         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4147         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4148 



















4149         /* initiate cleaning flow for buffers in the PCIe transaction layer */
4150         gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4151         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4152                         gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4153 
4154         /* Flush all writes and allow 20usec for all transactions to clear */
4155         IXGBE_WRITE_FLUSH(hw);
4156         usec_delay(20);
4157 
4158         /* restore previous register values */
4159         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4160         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4161 }
4162 











































































































































































































































































































































   1 /******************************************************************************
   2 
   3   Copyright (c) 2001-2015, Intel Corporation 
   4   All rights reserved.
   5   
   6   Redistribution and use in source and binary forms, with or without 
   7   modification, are permitted provided that the following conditions are met:
   8   
   9    1. Redistributions of source code must retain the above copyright notice, 
  10       this list of conditions and the following disclaimer.
  11   
  12    2. Redistributions in binary form must reproduce the above copyright 
  13       notice, this list of conditions and the following disclaimer in the 
  14       documentation and/or other materials provided with the distribution.
  15   
  16    3. Neither the name of the Intel Corporation nor the names of its 
  17       contributors may be used to endorse or promote products derived from 
  18       this software without specific prior written permission.
  19   
  20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  30   POSSIBILITY OF SUCH DAMAGE.
  31 
  32 ******************************************************************************/
  33 /*$FreeBSD$*/
  34 
  35 #include "ixgbe_common.h"
  36 #include "ixgbe_phy.h"
  37 #include "ixgbe_dcb.h"
  38 #include "ixgbe_dcb_82599.h"
  39 #include "ixgbe_api.h"
  40 
  41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  47                                         u16 count);
  48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  52 
  53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
  55                                          u16 *san_mac_offset);
  56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  57                                              u16 words, u16 *data);
  58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  59                                               u16 words, u16 *data);
  60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  61                                                  u16 offset);
  62 
  63 /**
  64  *  ixgbe_init_ops_generic - Inits function ptrs
  65  *  @hw: pointer to the hardware structure
  66  *
  67  *  Initialize the function pointers.
  68  **/
  69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
  70 {
  71         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
  72         struct ixgbe_mac_info *mac = &hw->mac;
  73         u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
  74 
  75         DEBUGFUNC("ixgbe_init_ops_generic");
  76 
  77         /* EEPROM */
  78         eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
  79         /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
  80         if (eec & IXGBE_EEC_PRES) {
  81                 eeprom->ops.read = ixgbe_read_eerd_generic;
  82                 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
  83         } else {
  84                 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
  85                 eeprom->ops.read_buffer =
  86                                  ixgbe_read_eeprom_buffer_bit_bang_generic;
  87         }
  88         eeprom->ops.write = ixgbe_write_eeprom_generic;
  89         eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
  90         eeprom->ops.validate_checksum =
  91                                       ixgbe_validate_eeprom_checksum_generic;
  92         eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
  93         eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
  94 
  95         /* MAC */
  96         mac->ops.init_hw = ixgbe_init_hw_generic;
  97         mac->ops.reset_hw = NULL;
  98         mac->ops.start_hw = ixgbe_start_hw_generic;
  99         mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
 100         mac->ops.get_media_type = NULL;
 101         mac->ops.get_supported_physical_layer = NULL;
 102         mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
 103         mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
 104         mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
 105         mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
 106         mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
 107         mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
 108         mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
 109         mac->ops.prot_autoc_read = prot_autoc_read_generic;
 110         mac->ops.prot_autoc_write = prot_autoc_write_generic;
 111 
 112         /* LEDs */
 113         mac->ops.led_on = ixgbe_led_on_generic;
 114         mac->ops.led_off = ixgbe_led_off_generic;
 115         mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
 116         mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
 117 
 118         /* RAR, Multicast, VLAN */
 119         mac->ops.set_rar = ixgbe_set_rar_generic;
 120         mac->ops.clear_rar = ixgbe_clear_rar_generic;
 121         mac->ops.insert_mac_addr = NULL;
 122         mac->ops.set_vmdq = NULL;
 123         mac->ops.clear_vmdq = NULL;
 124         mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
 125         mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
 126         mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
 127         mac->ops.enable_mc = ixgbe_enable_mc_generic;
 128         mac->ops.disable_mc = ixgbe_disable_mc_generic;
 129         mac->ops.clear_vfta = NULL;
 130         mac->ops.set_vfta = NULL;
 131         mac->ops.set_vlvf = NULL;
 132         mac->ops.init_uta_tables = NULL;
 133         mac->ops.enable_rx = ixgbe_enable_rx_generic;
 134         mac->ops.disable_rx = ixgbe_disable_rx_generic;
 135 
 136         /* Flow Control */
 137         mac->ops.fc_enable = ixgbe_fc_enable_generic;
 138         mac->ops.setup_fc = ixgbe_setup_fc_generic;
 139 
 140         /* Link */
 141         mac->ops.get_link_capabilities = NULL;
 142         mac->ops.setup_link = NULL;
 143         mac->ops.check_link = NULL;
 144         mac->ops.dmac_config = NULL;
 145         mac->ops.dmac_update_tcs = NULL;
 146         mac->ops.dmac_config_tcs = NULL;
 147 
 148         return IXGBE_SUCCESS;
 149 }
 150 
 151 /**
 152  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
 153  * of flow control
 154  * @hw: pointer to hardware structure
 155  *
 156  * This function returns TRUE if the device supports flow control
 157  * autonegotiation, and FALSE if it does not.
 158  *
 159  **/
 160 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
 161 {
 162         bool supported = FALSE;
 163         ixgbe_link_speed speed;
 164         bool link_up;
 165 
 166         DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
 167 
 168         switch (hw->phy.media_type) {
 169         case ixgbe_media_type_fiber_fixed:
 170         case ixgbe_media_type_fiber_qsfp:
 171         case ixgbe_media_type_fiber:
 172                 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
 173                 /* if link is down, assume supported */
 174                 if (link_up)
 175                         supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
 176                                 TRUE : FALSE;
 177                 else
 178                         supported = TRUE;
 179                 break;
 180         case ixgbe_media_type_backplane:
 181                 supported = TRUE;
 182                 break;
 183         case ixgbe_media_type_copper:
 184                 /* only some copper devices support flow control autoneg */
 185                 switch (hw->device_id) {
 186                 case IXGBE_DEV_ID_82599_T3_LOM:
 187                 case IXGBE_DEV_ID_X540T:
 188                 case IXGBE_DEV_ID_X540T1:
 189                 case IXGBE_DEV_ID_X540_BYPASS:
 190                 case IXGBE_DEV_ID_X550T:
 191                 case IXGBE_DEV_ID_X550T1:
 192                 case IXGBE_DEV_ID_X550EM_X_10G_T:
 193                         supported = TRUE;
 194                         break;
 195                 default:
 196                         supported = FALSE;
 197                 }
 198         default:
 199                 break;
 200         }
 201 
 202         if (!supported) {
 203                 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
 204                       "Device %x does not support flow control autoneg",
 205                       hw->device_id);
 206         }
 207 
 208         return supported;
 209 }
 210 
 211 /**
 212  *  ixgbe_setup_fc_generic - Set up flow control
 213  *  @hw: pointer to hardware structure
 214  *
 215  *  Called at init time to set up flow control.
 216  **/
 217 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 218 {
 219         s32 ret_val = IXGBE_SUCCESS;
 220         u32 reg = 0, reg_bp = 0;
 221         u16 reg_cu = 0;
 222         bool locked = FALSE;
 223 
 224         DEBUGFUNC("ixgbe_setup_fc_generic");
 225 
 226         /* Validate the requested mode */



 227         if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 228                 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
 229                            "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 230                 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 231                 goto out;
 232         }
 233 
 234         /*
 235          * 10gig parts do not have a word in the EEPROM to determine the
 236          * default flow control setting, so we explicitly set it to full.
 237          */
 238         if (hw->fc.requested_mode == ixgbe_fc_default)
 239                 hw->fc.requested_mode = ixgbe_fc_full;
 240 
 241         /*
 242          * Set up the 1G and 10G flow control advertisement registers so the
 243          * HW will be able to do fc autoneg once the cable is plugged in.  If
 244          * we link at 10G, the 1G advertisement is harmless and vice versa.
 245          */
 246         switch (hw->phy.media_type) {

 247         case ixgbe_media_type_backplane:
 248                 /* some MAC's need RMW protection on AUTOC */
 249                 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 250                 if (ret_val != IXGBE_SUCCESS)
 251                         goto out;
 252 
 253                 /* only backplane uses autoc so fall though */
 254         case ixgbe_media_type_fiber_fixed:
 255         case ixgbe_media_type_fiber_qsfp:
 256         case ixgbe_media_type_fiber:
 257                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 258 
 259                 break;
 260         case ixgbe_media_type_copper:
 261                 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 262                                      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
 263                 break;
 264         default:
 265                 break;
 266         }
 267 
 268         /*
 269          * The possible values of fc.requested_mode are:
 270          * 0: Flow control is completely disabled
 271          * 1: Rx flow control is enabled (we can receive pause frames,
 272          *    but not send pause frames).
 273          * 2: Tx flow control is enabled (we can send pause frames but
 274          *    we do not support receiving pause frames).
 275          * 3: Both Rx and Tx flow control (symmetric) are enabled.
 276          * other: Invalid.
 277          */
 278         switch (hw->fc.requested_mode) {


 303         case ixgbe_fc_rx_pause:
 304                 /*
 305                  * Rx Flow control is enabled and Tx Flow control is
 306                  * disabled by software override. Since there really
 307                  * isn't a way to advertise that we are capable of RX
 308                  * Pause ONLY, we will advertise that we support both
 309                  * symmetric and asymmetric Rx PAUSE, as such we fall
 310                  * through to the fc_full statement.  Later, we will
 311                  * disable the adapter's ability to send PAUSE frames.
 312                  */
 313         case ixgbe_fc_full:
 314                 /* Flow control (both Rx and Tx) is enabled by SW override. */
 315                 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 316                 if (hw->phy.media_type == ixgbe_media_type_backplane)
 317                         reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 318                                   IXGBE_AUTOC_ASM_PAUSE;
 319                 else if (hw->phy.media_type == ixgbe_media_type_copper)
 320                         reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 321                 break;
 322         default:
 323                 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
 324                              "Flow control param set incorrectly\n");
 325                 ret_val = IXGBE_ERR_CONFIG;
 326                 goto out;
 327                 break;
 328         }
 329 
 330         if (hw->mac.type < ixgbe_mac_X540) {
 331                 /*
 332                  * Enable auto-negotiation between the MAC & PHY;
 333                  * the MAC will advertise clause 37 flow control.
 334                  */
 335                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 336                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 337 
 338                 /* Disable AN timeout */
 339                 if (hw->fc.strict_ieee)
 340                         reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 341 
 342                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 343                 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 344         }
 345 
 346         /*
 347          * AUTOC restart handles negotiation of 1G and 10G on backplane
 348          * and copper. There is no need to set the PCS1GCTL register.
 349          *
 350          */
 351         if (hw->phy.media_type == ixgbe_media_type_backplane) {
 352                 reg_bp |= IXGBE_AUTOC_AN_RESTART;
 353                 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 354                 if (ret_val)
 355                         goto out;
 356         } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 357                     (ixgbe_device_supports_autoneg_fc(hw))) {
 358                 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 359                                       IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
 360         }
 361 
 362         DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 363 out:
 364         return ret_val;
 365 }
 366 
 367 /**
 368  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 369  *  @hw: pointer to hardware structure
 370  *
 371  *  Starts the hardware by filling the bus info structure and media type, clears
 372  *  all on chip counters, initializes receive address registers, multicast
 373  *  table, VLAN filter table, calls routine to set up link and flow control
 374  *  settings, and leaves transmit and receive units disabled and uninitialized
 375  **/
 376 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 377 {
 378         s32 ret_val;
 379         u32 ctrl_ext;
 380 
 381         DEBUGFUNC("ixgbe_start_hw_generic");
 382 


 471                 /* Start the HW */
 472                 status = hw->mac.ops.start_hw(hw);
 473         }
 474 
 475         return status;
 476 }
 477 
 478 /**
 479  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 480  *  @hw: pointer to hardware structure
 481  *
 482  *  Clears all hardware statistics counters by reading them from the hardware
 483  *  Statistics counters are clear on read.
 484  **/
 485 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 486 {
 487         u16 i = 0;
 488 
 489         DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
 490 
 491         IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 492         IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 493         IXGBE_READ_REG(hw, IXGBE_ERRBC);
 494         IXGBE_READ_REG(hw, IXGBE_MSPDC);
 495         for (i = 0; i < 8; i++)
 496                 IXGBE_READ_REG(hw, IXGBE_MPC(i));
 497 
 498         IXGBE_READ_REG(hw, IXGBE_MLFC);
 499         IXGBE_READ_REG(hw, IXGBE_MRFC);
 500         IXGBE_READ_REG(hw, IXGBE_RLEC);
 501         IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 502         IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 503         if (hw->mac.type >= ixgbe_mac_82599EB) {
 504                 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 505                 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 506         } else {
 507                 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 508                 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 509         }
 510 
 511         for (i = 0; i < 8; i++) {
 512                 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 513                 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 514                 if (hw->mac.type >= ixgbe_mac_82599EB) {
 515                         IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 516                         IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 517                 } else {
 518                         IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 519                         IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 520                 }
 521         }
 522         if (hw->mac.type >= ixgbe_mac_82599EB)
 523                 for (i = 0; i < 8; i++)
 524                         IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 525         IXGBE_READ_REG(hw, IXGBE_PRC64);
 526         IXGBE_READ_REG(hw, IXGBE_PRC127);
 527         IXGBE_READ_REG(hw, IXGBE_PRC255);
 528         IXGBE_READ_REG(hw, IXGBE_PRC511);
 529         IXGBE_READ_REG(hw, IXGBE_PRC1023);
 530         IXGBE_READ_REG(hw, IXGBE_PRC1522);
 531         IXGBE_READ_REG(hw, IXGBE_GPRC);
 532         IXGBE_READ_REG(hw, IXGBE_BPRC);
 533         IXGBE_READ_REG(hw, IXGBE_MPRC);
 534         IXGBE_READ_REG(hw, IXGBE_GPTC);
 535         IXGBE_READ_REG(hw, IXGBE_GORCL);
 536         IXGBE_READ_REG(hw, IXGBE_GORCH);
 537         IXGBE_READ_REG(hw, IXGBE_GOTCL);
 538         IXGBE_READ_REG(hw, IXGBE_GOTCH);
 539         if (hw->mac.type == ixgbe_mac_82598EB)
 540                 for (i = 0; i < 8; i++)
 541                         IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 542         IXGBE_READ_REG(hw, IXGBE_RUC);
 543         IXGBE_READ_REG(hw, IXGBE_RFC);
 544         IXGBE_READ_REG(hw, IXGBE_ROC);
 545         IXGBE_READ_REG(hw, IXGBE_RJC);
 546         IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 547         IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 548         IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 549         IXGBE_READ_REG(hw, IXGBE_TORL);
 550         IXGBE_READ_REG(hw, IXGBE_TORH);
 551         IXGBE_READ_REG(hw, IXGBE_TPR);
 552         IXGBE_READ_REG(hw, IXGBE_TPT);
 553         IXGBE_READ_REG(hw, IXGBE_PTC64);
 554         IXGBE_READ_REG(hw, IXGBE_PTC127);
 555         IXGBE_READ_REG(hw, IXGBE_PTC255);
 556         IXGBE_READ_REG(hw, IXGBE_PTC511);
 557         IXGBE_READ_REG(hw, IXGBE_PTC1023);
 558         IXGBE_READ_REG(hw, IXGBE_PTC1522);
 559         IXGBE_READ_REG(hw, IXGBE_MPTC);
 560         IXGBE_READ_REG(hw, IXGBE_BPTC);
 561         for (i = 0; i < 16; i++) {
 562                 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 563                 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 564                 if (hw->mac.type >= ixgbe_mac_82599EB) {
 565                         IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 566                         IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 567                         IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 568                         IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 569                         IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 570                 } else {
 571                         IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 572                         IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 573                 }
 574         }
 575 
 576         if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 577                 if (hw->phy.id == 0)
 578                         ixgbe_identify_phy(hw);
 579                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
 580                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 581                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
 582                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 583                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
 584                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 585                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
 586                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 587         }
 588 
 589         return IXGBE_SUCCESS;
 590 }
 591 
 592 /**
 593  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 594  *  @hw: pointer to hardware structure
 595  *  @pba_num: stores the part number string from the EEPROM
 596  *  @pba_num_size: part number string buffer length
 597  *
 598  *  Reads the part number string from the EEPROM.


 718         if (ret_val) {
 719                 DEBUGOUT("NVM Read Error\n");
 720                 return ret_val;
 721         } else if (data == IXGBE_PBANUM_PTR_GUARD) {
 722                 DEBUGOUT("NVM Not supported\n");
 723                 return IXGBE_NOT_IMPLEMENTED;
 724         }
 725         *pba_num = (u32)(data << 16);
 726 
 727         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
 728         if (ret_val) {
 729                 DEBUGOUT("NVM Read Error\n");
 730                 return ret_val;
 731         }
 732         *pba_num |= data;
 733 
 734         return IXGBE_SUCCESS;
 735 }
 736 
 737 /**
 738  *  ixgbe_read_pba_raw
 739  *  @hw: pointer to the HW structure
 740  *  @eeprom_buf: optional pointer to EEPROM image
 741  *  @eeprom_buf_size: size of EEPROM image in words
 742  *  @max_pba_block_size: PBA block size limit
 743  *  @pba: pointer to output PBA structure
 744  *
 745  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
 746  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
 747  *
 748  **/
 749 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
 750                        u32 eeprom_buf_size, u16 max_pba_block_size,
 751                        struct ixgbe_pba *pba)
 752 {
 753         s32 ret_val;
 754         u16 pba_block_size;
 755 
 756         if (pba == NULL)
 757                 return IXGBE_ERR_PARAM;
 758 
 759         if (eeprom_buf == NULL) {
 760                 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
 761                                                      &pba->word[0]);
 762                 if (ret_val)
 763                         return ret_val;
 764         } else {
 765                 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
 766                         pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
 767                         pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
 768                 } else {
 769                         return IXGBE_ERR_PARAM;
 770                 }
 771         }
 772 
 773         if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
 774                 if (pba->pba_block == NULL)
 775                         return IXGBE_ERR_PARAM;
 776 
 777                 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
 778                                                    eeprom_buf_size,
 779                                                    &pba_block_size);
 780                 if (ret_val)
 781                         return ret_val;
 782 
 783                 if (pba_block_size > max_pba_block_size)
 784                         return IXGBE_ERR_PARAM;
 785 
 786                 if (eeprom_buf == NULL) {
 787                         ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
 788                                                              pba_block_size,
 789                                                              pba->pba_block);
 790                         if (ret_val)
 791                                 return ret_val;
 792                 } else {
 793                         if (eeprom_buf_size > (u32)(pba->word[1] +
 794                                               pba_block_size)) {
 795                                 memcpy(pba->pba_block,
 796                                        &eeprom_buf[pba->word[1]],
 797                                        pba_block_size * sizeof(u16));
 798                         } else {
 799                                 return IXGBE_ERR_PARAM;
 800                         }
 801                 }
 802         }
 803 
 804         return IXGBE_SUCCESS;
 805 }
 806 
 807 /**
 808  *  ixgbe_write_pba_raw
 809  *  @hw: pointer to the HW structure
 810  *  @eeprom_buf: optional pointer to EEPROM image
 811  *  @eeprom_buf_size: size of EEPROM image in words
 812  *  @pba: pointer to PBA structure
 813  *
 814  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
 815  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
 816  *
 817  **/
 818 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
 819                         u32 eeprom_buf_size, struct ixgbe_pba *pba)
 820 {
 821         s32 ret_val;
 822 
 823         if (pba == NULL)
 824                 return IXGBE_ERR_PARAM;
 825 
 826         if (eeprom_buf == NULL) {
 827                 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
 828                                                       &pba->word[0]);
 829                 if (ret_val)
 830                         return ret_val;
 831         } else {
 832                 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
 833                         eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
 834                         eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
 835                 } else {
 836                         return IXGBE_ERR_PARAM;
 837                 }
 838         }
 839 
 840         if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
 841                 if (pba->pba_block == NULL)
 842                         return IXGBE_ERR_PARAM;
 843 
 844                 if (eeprom_buf == NULL) {
 845                         ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
 846                                                               pba->pba_block[0],
 847                                                               pba->pba_block);
 848                         if (ret_val)
 849                                 return ret_val;
 850                 } else {
 851                         if (eeprom_buf_size > (u32)(pba->word[1] +
 852                                               pba->pba_block[0])) {
 853                                 memcpy(&eeprom_buf[pba->word[1]],
 854                                        pba->pba_block,
 855                                        pba->pba_block[0] * sizeof(u16));
 856                         } else {
 857                                 return IXGBE_ERR_PARAM;
 858                         }
 859                 }
 860         }
 861 
 862         return IXGBE_SUCCESS;
 863 }
 864 
 865 /**
 866  *  ixgbe_get_pba_block_size
 867  *  @hw: pointer to the HW structure
 868  *  @eeprom_buf: optional pointer to EEPROM image
 869  *  @eeprom_buf_size: size of EEPROM image in words
 870  *  @pba_data_size: pointer to output variable
 871  *
 872  *  Returns the size of the PBA block in words. Function operates on EEPROM
 873  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
 874  *  EEPROM device.
 875  *
 876  **/
 877 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
 878                              u32 eeprom_buf_size, u16 *pba_block_size)
 879 {
 880         s32 ret_val;
 881         u16 pba_word[2];
 882         u16 length;
 883 
 884         DEBUGFUNC("ixgbe_get_pba_block_size");
 885 
 886         if (eeprom_buf == NULL) {
 887                 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
 888                                                      &pba_word[0]);
 889                 if (ret_val)
 890                         return ret_val;
 891         } else {
 892                 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
 893                         pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
 894                         pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
 895                 } else {
 896                         return IXGBE_ERR_PARAM;
 897                 }
 898         }
 899 
 900         if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
 901                 if (eeprom_buf == NULL) {
 902                         ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
 903                                                       &length);
 904                         if (ret_val)
 905                                 return ret_val;
 906                 } else {
 907                         if (eeprom_buf_size > pba_word[1])
 908                                 length = eeprom_buf[pba_word[1] + 0];
 909                         else
 910                                 return IXGBE_ERR_PARAM;
 911                 }
 912 
 913                 if (length == 0xFFFF || length == 0)
 914                         return IXGBE_ERR_PBA_SECTION;
 915         } else {
 916                 /* PBA number in legacy format, there is no PBA Block. */
 917                 length = 0;
 918         }
 919 
 920         if (pba_block_size != NULL)
 921                 *pba_block_size = length;
 922 
 923         return IXGBE_SUCCESS;
 924 }
 925 
 926 /**
 927  *  ixgbe_get_mac_addr_generic - Generic get MAC address
 928  *  @hw: pointer to hardware structure
 929  *  @mac_addr: Adapter MAC address
 930  *
 931  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 932  *  A reset of the adapter must be performed prior to calling this function
 933  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 934  **/
 935 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 936 {
 937         u32 rar_high;
 938         u32 rar_low;
 939         u16 i;
 940 
 941         DEBUGFUNC("ixgbe_get_mac_addr_generic");
 942 
 943         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 944         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 945 
 946         for (i = 0; i < 4; i++)
 947                 mac_addr[i] = (u8)(rar_low >> (i*8));
 948 
 949         for (i = 0; i < 2; i++)
 950                 mac_addr[i+4] = (u8)(rar_high >> (i*8));
 951 
 952         return IXGBE_SUCCESS;
 953 }
 954 
 955 /**
 956  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
 957  *  @hw: pointer to hardware structure
 958  *  @link_status: the link status returned by the PCI config space
 959  *
 960  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
 961  **/
 962 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
 963 {
 964         struct ixgbe_mac_info *mac = &hw->mac;

 965 
 966         if (hw->bus.type == ixgbe_bus_type_unknown)

 967                 hw->bus.type = ixgbe_bus_type_pci_express;
 968 



 969         switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 970         case IXGBE_PCI_LINK_WIDTH_1:
 971                 hw->bus.width = ixgbe_bus_width_pcie_x1;
 972                 break;
 973         case IXGBE_PCI_LINK_WIDTH_2:
 974                 hw->bus.width = ixgbe_bus_width_pcie_x2;
 975                 break;
 976         case IXGBE_PCI_LINK_WIDTH_4:
 977                 hw->bus.width = ixgbe_bus_width_pcie_x4;
 978                 break;
 979         case IXGBE_PCI_LINK_WIDTH_8:
 980                 hw->bus.width = ixgbe_bus_width_pcie_x8;
 981                 break;
 982         default:
 983                 hw->bus.width = ixgbe_bus_width_unknown;
 984                 break;
 985         }
 986 
 987         switch (link_status & IXGBE_PCI_LINK_SPEED) {
 988         case IXGBE_PCI_LINK_SPEED_2500:
 989                 hw->bus.speed = ixgbe_bus_speed_2500;
 990                 break;
 991         case IXGBE_PCI_LINK_SPEED_5000:
 992                 hw->bus.speed = ixgbe_bus_speed_5000;
 993                 break;
 994         case IXGBE_PCI_LINK_SPEED_8000:
 995                 hw->bus.speed = ixgbe_bus_speed_8000;
 996                 break;
 997         default:
 998                 hw->bus.speed = ixgbe_bus_speed_unknown;
 999                 break;
1000         }
1001 
1002         mac->ops.set_lan_id(hw);
1003 }
1004 
1005 /**
1006  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1007  *  @hw: pointer to hardware structure
1008  *
1009  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1010  *  store this data within the ixgbe_hw structure.
1011  **/
1012 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1013 {
1014         u16 link_status;
1015 
1016         DEBUGFUNC("ixgbe_get_bus_info_generic");
1017 
1018         /* Get the negotiated link width and speed from PCI config space */
1019         link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1020 
1021         ixgbe_set_pci_config_data_generic(hw, link_status);
1022 
1023         return IXGBE_SUCCESS;
1024 }
1025 
1026 /**
1027  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1028  *  @hw: pointer to the HW structure
1029  *
1030  *  Determines the LAN function id by reading memory-mapped registers
1031  *  and swaps the port value if requested.
1032  **/
1033 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1034 {
1035         struct ixgbe_bus_info *bus = &hw->bus;
1036         u32 reg;
1037 
1038         DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1039 
1040         reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1041         bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1042         bus->lan_id = bus->func;
1043 
1044         /* check for a port swap */
1045         reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1046         if (reg & IXGBE_FACTPS_LFS)
1047                 bus->func ^= 0x1;
1048 }
1049 
1050 /**
1051  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1052  *  @hw: pointer to hardware structure
1053  *
1054  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1055  *  disables transmit and receive units. The adapter_stopped flag is used by
1056  *  the shared code and drivers to determine if the adapter is in a stopped
1057  *  state and should not touch the hardware.
1058  **/
1059 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1060 {
1061         u32 reg_val;
1062         u16 i;
1063 
1064         DEBUGFUNC("ixgbe_stop_adapter_generic");
1065 
1066         /*
1067          * Set the adapter_stopped flag so other driver functions stop touching
1068          * the hardware
1069          */
1070         hw->adapter_stopped = TRUE;
1071 
1072         /* Disable the receive unit */
1073         ixgbe_disable_rx(hw);
1074 
1075         /* Clear interrupt mask to stop interrupts from being generated */
1076         IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1077 
1078         /* Clear any pending interrupts, flush previous writes */
1079         IXGBE_READ_REG(hw, IXGBE_EICR);
1080 
1081         /* Disable the transmit unit.  Each queue must be disabled. */
1082         for (i = 0; i < hw->mac.max_tx_queues; i++)
1083                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1084 
1085         /* Disable the receive unit by stopping each queue */
1086         for (i = 0; i < hw->mac.max_rx_queues; i++) {
1087                 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1088                 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1089                 reg_val |= IXGBE_RXDCTL_SWFLSH;
1090                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1091         }
1092 
1093         /* flush all queues disables */
1094         IXGBE_WRITE_FLUSH(hw);
1095         msec_delay(2);
1096 
1097         /*
1098          * Prevent the PCI-E bus from hanging by disabling PCI-E master
1099          * access and verify no pending requests
1100          */
1101         return ixgbe_disable_pcie_master(hw);
1102 }
1103 
1104 /**
1105  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1106  *  @hw: pointer to hardware structure
1107  *  @index: led number to turn on
1108  **/
1109 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1110 {
1111         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1112 
1113         DEBUGFUNC("ixgbe_led_on_generic");
1114 
1115         /* To turn on the LED, set mode to ON. */
1116         led_reg &= ~IXGBE_LED_MODE_MASK(index);
1117         led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1118         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);


1151 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1152 {
1153         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1154         u32 eec;
1155         u16 eeprom_size;
1156 
1157         DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1158 
1159         if (eeprom->type == ixgbe_eeprom_uninitialized) {
1160                 eeprom->type = ixgbe_eeprom_none;
1161                 /* Set default semaphore delay to 10ms which is a well
1162                  * tested value */
1163                 eeprom->semaphore_delay = 10;
1164                 /* Clear EEPROM page size, it will be initialized as needed */
1165                 eeprom->word_page_size = 0;
1166 
1167                 /*
1168                  * Check for EEPROM present first.
1169                  * If not present leave as none
1170                  */
1171                 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1172                 if (eec & IXGBE_EEC_PRES) {
1173                         eeprom->type = ixgbe_eeprom_spi;
1174 
1175                         /*
1176                          * SPI EEPROM is assumed here.  This code would need to
1177                          * change if a future EEPROM is not SPI.
1178                          */
1179                         eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1180                                             IXGBE_EEC_SIZE_SHIFT);
1181                         eeprom->word_size = 1 << (eeprom_size +
1182                                              IXGBE_EEPROM_WORD_SIZE_SHIFT);
1183                 }
1184 
1185                 if (eec & IXGBE_EEC_ADDR_SIZE)
1186                         eeprom->address_bits = 16;
1187                 else
1188                         eeprom->address_bits = 8;
1189                 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1190                           "%d\n", eeprom->type, eeprom->word_size,
1191                           eeprom->address_bits);


1212         DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1213 
1214         hw->eeprom.ops.init_params(hw);
1215 
1216         if (words == 0) {
1217                 status = IXGBE_ERR_INVALID_ARGUMENT;
1218                 goto out;
1219         }
1220 
1221         if (offset + words > hw->eeprom.word_size) {
1222                 status = IXGBE_ERR_EEPROM;
1223                 goto out;
1224         }
1225 
1226         /*
1227          * The EEPROM page size cannot be queried from the chip. We do lazy
1228          * initialization. It is worth to do that when we write large buffer.
1229          */
1230         if ((hw->eeprom.word_page_size == 0) &&
1231             (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1232                 ixgbe_detect_eeprom_page_size_generic(hw, offset);


1233 
1234         /*
1235          * We cannot hold synchronization semaphores for too long
1236          * to avoid other entity starvation. However it is more efficient
1237          * to read in bursts than synchronizing access for each word.
1238          */
1239         for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1240                 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1241                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1242                 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1243                                                             count, &data[i]);
1244 
1245                 if (status != IXGBE_SUCCESS)
1246                         break;
1247         }
1248 
1249 out:
1250         return status;
1251 }
1252 


1501  *  @hw: pointer to hardware structure
1502  *  @offset: offset of word in the EEPROM to read
1503  *  @words: number of word(s)
1504  *  @data: 16 bit word(s) from the EEPROM
1505  *
1506  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1507  **/
1508 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1509                                    u16 words, u16 *data)
1510 {
1511         u32 eerd;
1512         s32 status = IXGBE_SUCCESS;
1513         u32 i;
1514 
1515         DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1516 
1517         hw->eeprom.ops.init_params(hw);
1518 
1519         if (words == 0) {
1520                 status = IXGBE_ERR_INVALID_ARGUMENT;
1521                 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1522                 goto out;
1523         }
1524 
1525         if (offset >= hw->eeprom.word_size) {
1526                 status = IXGBE_ERR_EEPROM;
1527                 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1528                 goto out;
1529         }
1530 
1531         for (i = 0; i < words; i++) {
1532                 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1533                        IXGBE_EEPROM_RW_REG_START;
1534 
1535                 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1536                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1537 
1538                 if (status == IXGBE_SUCCESS) {
1539                         data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1540                                    IXGBE_EEPROM_RW_REG_DATA);
1541                 } else {
1542                         DEBUGOUT("Eeprom read timed out\n");
1543                         goto out;
1544                 }
1545         }
1546 out:
1547         return status;
1548 }
1549 
1550 /**
1551  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1552  *  @hw: pointer to hardware structure


1609  *  @hw: pointer to hardware structure
1610  *  @offset: offset of  word in the EEPROM to write
1611  *  @words: number of word(s)
1612  *  @data: word(s) write to the EEPROM
1613  *
1614  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1615  **/
1616 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1617                                     u16 words, u16 *data)
1618 {
1619         u32 eewr;
1620         s32 status = IXGBE_SUCCESS;
1621         u16 i;
1622 
1623         DEBUGFUNC("ixgbe_write_eewr_generic");
1624 
1625         hw->eeprom.ops.init_params(hw);
1626 
1627         if (words == 0) {
1628                 status = IXGBE_ERR_INVALID_ARGUMENT;
1629                 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1630                 goto out;
1631         }
1632 
1633         if (offset >= hw->eeprom.word_size) {
1634                 status = IXGBE_ERR_EEPROM;
1635                 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1636                 goto out;
1637         }
1638 
1639         for (i = 0; i < words; i++) {
1640                 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1641                         (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1642                         IXGBE_EEPROM_RW_REG_START;
1643 
1644                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1645                 if (status != IXGBE_SUCCESS) {
1646                         DEBUGOUT("Eeprom write EEWR timed out\n");
1647                         goto out;
1648                 }
1649 
1650                 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1651 
1652                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1653                 if (status != IXGBE_SUCCESS) {
1654                         DEBUGOUT("Eeprom write EEWR timed out\n");
1655                         goto out;


1684 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1685 {
1686         u32 i;
1687         u32 reg;
1688         s32 status = IXGBE_ERR_EEPROM;
1689 
1690         DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1691 
1692         for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1693                 if (ee_reg == IXGBE_NVM_POLL_READ)
1694                         reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1695                 else
1696                         reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1697 
1698                 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1699                         status = IXGBE_SUCCESS;
1700                         break;
1701                 }
1702                 usec_delay(5);
1703         }
1704 
1705         if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1706                 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1707                              "EEPROM read/write done polling timed out");
1708 
1709         return status;
1710 }
1711 
1712 /**
1713  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1714  *  @hw: pointer to hardware structure
1715  *
1716  *  Prepares EEPROM for access using bit-bang method. This function should
1717  *  be called before issuing a command to the EEPROM.
1718  **/
1719 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1720 {
1721         s32 status = IXGBE_SUCCESS;
1722         u32 eec;
1723         u32 i;
1724 
1725         DEBUGFUNC("ixgbe_acquire_eeprom");
1726 
1727         if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1728             != IXGBE_SUCCESS)
1729                 status = IXGBE_ERR_SWFW_SYNC;
1730 
1731         if (status == IXGBE_SUCCESS) {
1732                 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1733 
1734                 /* Request EEPROM Access */
1735                 eec |= IXGBE_EEC_REQ;
1736                 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1737 
1738                 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1739                         eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1740                         if (eec & IXGBE_EEC_GNT)
1741                                 break;
1742                         usec_delay(5);
1743                 }
1744 
1745                 /* Release if grant not acquired */
1746                 if (!(eec & IXGBE_EEC_GNT)) {
1747                         eec &= ~IXGBE_EEC_REQ;
1748                         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1749                         DEBUGOUT("Could not acquire EEPROM grant\n");
1750 
1751                         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1752                         status = IXGBE_ERR_EEPROM;
1753                 }
1754 
1755                 /* Setup EEPROM for Read/Write */
1756                 if (status == IXGBE_SUCCESS) {
1757                         /* Clear CS and SK */
1758                         eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1759                         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1760                         IXGBE_WRITE_FLUSH(hw);
1761                         usec_delay(1);
1762                 }
1763         }
1764         return status;
1765 }
1766 
1767 /**
1768  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1769  *  @hw: pointer to hardware structure
1770  *
1771  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1772  **/
1773 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1774 {
1775         s32 status = IXGBE_ERR_EEPROM;
1776         u32 timeout = 2000;
1777         u32 i;
1778         u32 swsm;
1779 
1780         DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1781 
1782 
1783         /* Get SMBI software semaphore between device drivers first */
1784         for (i = 0; i < timeout; i++) {
1785                 /*
1786                  * If the SMBI bit is 0 when we read it, then the bit will be
1787                  * set and we have the semaphore
1788                  */
1789                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1790                 if (!(swsm & IXGBE_SWSM_SMBI)) {
1791                         status = IXGBE_SUCCESS;
1792                         break;
1793                 }
1794                 usec_delay(50);
1795         }
1796 
1797         if (i == timeout) {
1798                 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1799                          "not granted.\n");
1800                 /*
1801                  * this release is particularly important because our attempts
1802                  * above to get the semaphore may have succeeded, and if there
1803                  * was a timeout, we should unconditionally clear the semaphore
1804                  * bits to free the driver to make progress
1805                  */
1806                 ixgbe_release_eeprom_semaphore(hw);
1807 
1808                 usec_delay(50);
1809                 /*
1810                  * one last try
1811                  * If the SMBI bit is 0 when we read it, then the bit will be
1812                  * set and we have the semaphore
1813                  */
1814                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1815                 if (!(swsm & IXGBE_SWSM_SMBI))
1816                         status = IXGBE_SUCCESS;
1817         }
1818 
1819         /* Now get the semaphore between SW/FW through the SWESMBI bit */
1820         if (status == IXGBE_SUCCESS) {
1821                 for (i = 0; i < timeout; i++) {
1822                         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1823 
1824                         /* Set the SW EEPROM semaphore bit to request access */
1825                         swsm |= IXGBE_SWSM_SWESMBI;
1826                         IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1827 
1828                         /*
1829                          * If we set the bit successfully then we got the
1830                          * semaphore.
1831                          */
1832                         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1833                         if (swsm & IXGBE_SWSM_SWESMBI)
1834                                 break;
1835 
1836                         usec_delay(50);
1837                 }
1838 
1839                 /*
1840                  * Release semaphores and return error if SW EEPROM semaphore
1841                  * was not granted because we don't have access to the EEPROM
1842                  */
1843                 if (i >= timeout) {
1844                         ERROR_REPORT1(IXGBE_ERROR_POLLING,
1845                             "SWESMBI Software EEPROM semaphore not granted.\n");
1846                         ixgbe_release_eeprom_semaphore(hw);
1847                         status = IXGBE_ERR_EEPROM;
1848                 }
1849         } else {
1850                 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1851                              "Software semaphore SMBI between device drivers "
1852                              "not granted.\n");
1853         }
1854 
1855         return status;
1856 }
1857 
1858 /**
1859  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1860  *  @hw: pointer to hardware structure
1861  *
1862  *  This function clears hardware semaphore bits.
1863  **/
1864 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1865 {
1866         u32 swsm;
1867 
1868         DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1869 
1870         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1871 


1885         u16 i;
1886         u8 spi_stat_reg;
1887 
1888         DEBUGFUNC("ixgbe_ready_eeprom");
1889 
1890         /*
1891          * Read "Status Register" repeatedly until the LSB is cleared.  The
1892          * EEPROM will signal that the command has been completed by clearing
1893          * bit 0 of the internal status register.  If it's not cleared within
1894          * 5 milliseconds, then error out.
1895          */
1896         for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1897                 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1898                                             IXGBE_EEPROM_OPCODE_BITS);
1899                 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1900                 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1901                         break;
1902 
1903                 usec_delay(5);
1904                 ixgbe_standby_eeprom(hw);
1905         }
1906 
1907         /*
1908          * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1909          * devices (and only 0-5mSec on 5V devices)
1910          */
1911         if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1912                 DEBUGOUT("SPI EEPROM Status error\n");
1913                 status = IXGBE_ERR_EEPROM;
1914         }
1915 
1916         return status;
1917 }
1918 
1919 /**
1920  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1921  *  @hw: pointer to hardware structure
1922  **/
1923 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1924 {
1925         u32 eec;
1926 
1927         DEBUGFUNC("ixgbe_standby_eeprom");
1928 
1929         eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1930 
1931         /* Toggle CS to flush commands */
1932         eec |= IXGBE_EEC_CS;
1933         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1934         IXGBE_WRITE_FLUSH(hw);
1935         usec_delay(1);
1936         eec &= ~IXGBE_EEC_CS;
1937         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1938         IXGBE_WRITE_FLUSH(hw);
1939         usec_delay(1);
1940 }
1941 
1942 /**
1943  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1944  *  @hw: pointer to hardware structure
1945  *  @data: data to send to the EEPROM
1946  *  @count: number of bits to shift out
1947  **/
1948 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1949                                         u16 count)
1950 {
1951         u32 eec;
1952         u32 mask;
1953         u32 i;
1954 
1955         DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1956 
1957         eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1958 
1959         /*
1960          * Mask is used to shift "count" bits of "data" out to the EEPROM
1961          * one bit at a time.  Determine the starting bit based on count
1962          */
1963         mask = 0x01 << (count - 1);
1964 
1965         for (i = 0; i < count; i++) {
1966                 /*
1967                  * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1968                  * "1", and then raising and then lowering the clock (the SK
1969                  * bit controls the clock input to the EEPROM).  A "0" is
1970                  * shifted out to the EEPROM by setting "DI" to "0" and then
1971                  * raising and then lowering the clock.
1972                  */
1973                 if (data & mask)
1974                         eec |= IXGBE_EEC_DI;
1975                 else
1976                         eec &= ~IXGBE_EEC_DI;
1977 
1978                 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1979                 IXGBE_WRITE_FLUSH(hw);
1980 
1981                 usec_delay(1);
1982 
1983                 ixgbe_raise_eeprom_clk(hw, &eec);
1984                 ixgbe_lower_eeprom_clk(hw, &eec);
1985 
1986                 /*
1987                  * Shift mask to signify next bit of data to shift in to the
1988                  * EEPROM
1989                  */
1990                 mask = mask >> 1;
1991         }
1992 
1993         /* We leave the "DI" bit set to "0" when we leave this routine. */
1994         eec &= ~IXGBE_EEC_DI;
1995         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1996         IXGBE_WRITE_FLUSH(hw);
1997 }
1998 
1999 /**
2000  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2001  *  @hw: pointer to hardware structure
2002  **/
2003 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2004 {
2005         u32 eec;
2006         u32 i;
2007         u16 data = 0;
2008 
2009         DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2010 
2011         /*
2012          * In order to read a register from the EEPROM, we need to shift
2013          * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2014          * the clock input to the EEPROM (setting the SK bit), and then reading
2015          * the value of the "DO" bit.  During this "shifting in" process the
2016          * "DI" bit should always be clear.
2017          */
2018         eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2019 
2020         eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2021 
2022         for (i = 0; i < count; i++) {
2023                 data = data << 1;
2024                 ixgbe_raise_eeprom_clk(hw, &eec);
2025 
2026                 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2027 
2028                 eec &= ~(IXGBE_EEC_DI);
2029                 if (eec & IXGBE_EEC_DO)
2030                         data |= 1;
2031 
2032                 ixgbe_lower_eeprom_clk(hw, &eec);
2033         }
2034 
2035         return data;
2036 }
2037 
2038 /**
2039  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2040  *  @hw: pointer to hardware structure
2041  *  @eec: EEC register's current value
2042  **/
2043 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2044 {
2045         DEBUGFUNC("ixgbe_raise_eeprom_clk");
2046 
2047         /*
2048          * Raise the clock input to the EEPROM
2049          * (setting the SK bit), then delay
2050          */
2051         *eec = *eec | IXGBE_EEC_SK;
2052         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2053         IXGBE_WRITE_FLUSH(hw);
2054         usec_delay(1);
2055 }
2056 
2057 /**
2058  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2059  *  @hw: pointer to hardware structure
2060  *  @eecd: EECD's current value
2061  **/
2062 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2063 {
2064         DEBUGFUNC("ixgbe_lower_eeprom_clk");
2065 
2066         /*
2067          * Lower the clock input to the EEPROM (clearing the SK bit), then
2068          * delay
2069          */
2070         *eec = *eec & ~IXGBE_EEC_SK;
2071         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2072         IXGBE_WRITE_FLUSH(hw);
2073         usec_delay(1);
2074 }
2075 
2076 /**
2077  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2078  *  @hw: pointer to hardware structure
2079  **/
2080 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2081 {
2082         u32 eec;
2083 
2084         DEBUGFUNC("ixgbe_release_eeprom");
2085 
2086         eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2087 
2088         eec |= IXGBE_EEC_CS;  /* Pull CS high */
2089         eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2090 
2091         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2092         IXGBE_WRITE_FLUSH(hw);
2093 
2094         usec_delay(1);
2095 
2096         /* Stop requesting EEPROM access */
2097         eec &= ~IXGBE_EEC_REQ;
2098         IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2099 
2100         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2101 
2102         /* Delay before attempt to obtain semaphore again to allow FW access */
2103         msec_delay(hw->eeprom.semaphore_delay);
2104 }
2105 
2106 /**
2107  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2108  *  @hw: pointer to hardware structure
2109  *
2110  *  Returns a negative error code on error, or the 16-bit checksum
2111  **/
2112 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2113 {
2114         u16 i;
2115         u16 j;
2116         u16 checksum = 0;
2117         u16 length = 0;
2118         u16 pointer = 0;
2119         u16 word = 0;
2120 
2121         DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2122 
2123         /* Include 0x0-0x3F in the checksum */
2124         for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2125                 if (hw->eeprom.ops.read(hw, i, &word)) {
2126                         DEBUGOUT("EEPROM read failed\n");
2127                         return IXGBE_ERR_EEPROM;
2128                 }
2129                 checksum += word;
2130         }
2131 
2132         /* Include all data from pointers except for the fw pointer */
2133         for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2134                 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2135                         DEBUGOUT("EEPROM read failed\n");
2136                         return IXGBE_ERR_EEPROM;
2137                 }
2138 
2139                 /* If the pointer seems invalid */
2140                 if (pointer == 0xFFFF || pointer == 0)
2141                         continue;
2142 
2143                 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2144                         DEBUGOUT("EEPROM read failed\n");
2145                         return IXGBE_ERR_EEPROM;

2146                 }
2147 
2148                 if (length == 0xFFFF || length == 0)
2149                         continue;
2150 
2151                 for (j = pointer + 1; j <= pointer + length; j++) {
2152                         if (hw->eeprom.ops.read(hw, j, &word)) {
2153                                 DEBUGOUT("EEPROM read failed\n");
2154                                 return IXGBE_ERR_EEPROM;
2155                         }
2156                         checksum += word;
2157                 }
2158         }
2159 
2160         checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2161 
2162         return (s32)checksum;
2163 }
2164 
2165 /**
2166  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2167  *  @hw: pointer to hardware structure
2168  *  @checksum_val: calculated checksum
2169  *
2170  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2171  *  caller does not need checksum_val, the value can be NULL.
2172  **/
2173 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2174                                            u16 *checksum_val)
2175 {
2176         s32 status;
2177         u16 checksum;
2178         u16 read_checksum = 0;
2179 
2180         DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2181 
2182         /* Read the first word from the EEPROM. If this times out or fails, do

2183          * not continue or we could be in for a very long wait while every
2184          * EEPROM read fails
2185          */
2186         status = hw->eeprom.ops.read(hw, 0, &checksum);
2187         if (status) {
2188                 DEBUGOUT("EEPROM read failed\n");
2189                 return status;
2190         }
2191 
2192         status = hw->eeprom.ops.calc_checksum(hw);
2193         if (status < 0)
2194                 return status;
2195 
2196         checksum = (u16)(status & 0xffff);
2197 
2198         status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2199         if (status) {
2200                 DEBUGOUT("EEPROM read failed\n");
2201                 return status;
2202         }
2203 
2204         /* Verify read checksum from EEPROM is the same as
2205          * calculated checksum
2206          */
2207         if (read_checksum != checksum)
2208                 status = IXGBE_ERR_EEPROM_CHECKSUM;
2209 
2210         /* If the user cares, return the calculated checksum */
2211         if (checksum_val)
2212                 *checksum_val = checksum;



2213 
2214         return status;
2215 }
2216 
2217 /**
2218  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2219  *  @hw: pointer to hardware structure
2220  **/
2221 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2222 {
2223         s32 status;
2224         u16 checksum;
2225 
2226         DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2227 
2228         /* Read the first word from the EEPROM. If this times out or fails, do

2229          * not continue or we could be in for a very long wait while every
2230          * EEPROM read fails
2231          */
2232         status = hw->eeprom.ops.read(hw, 0, &checksum);
2233         if (status) {





2234                 DEBUGOUT("EEPROM read failed\n");
2235                 return status;
2236         }
2237 
2238         status = hw->eeprom.ops.calc_checksum(hw);
2239         if (status < 0)
2240                 return status;
2241 
2242         checksum = (u16)(status & 0xffff);
2243 
2244         status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2245 
2246         return status;
2247 }
2248 
2249 /**
2250  *  ixgbe_validate_mac_addr - Validate MAC address
2251  *  @mac_addr: pointer to MAC address.
2252  *
2253  *  Tests a MAC address to ensure it is a valid Individual Address
2254  **/
2255 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2256 {
2257         s32 status = IXGBE_SUCCESS;
2258 
2259         DEBUGFUNC("ixgbe_validate_mac_addr");
2260 
2261         /* Make sure it is not a multicast address */
2262         if (IXGBE_IS_MULTICAST(mac_addr)) {
2263                 DEBUGOUT("MAC address is multicast\n");
2264                 status = IXGBE_ERR_INVALID_MAC_ADDR;
2265         /* Not a broadcast address */
2266         } else if (IXGBE_IS_BROADCAST(mac_addr)) {


2278 /**
2279  *  ixgbe_set_rar_generic - Set Rx address register
2280  *  @hw: pointer to hardware structure
2281  *  @index: Receive address register to write
2282  *  @addr: Address to put into receive address register
2283  *  @vmdq: VMDq "set" or "pool" index
2284  *  @enable_addr: set flag that address is active
2285  *
2286  *  Puts an ethernet address into a receive address register.
2287  **/
2288 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2289                           u32 enable_addr)
2290 {
2291         u32 rar_low, rar_high;
2292         u32 rar_entries = hw->mac.num_rar_entries;
2293 
2294         DEBUGFUNC("ixgbe_set_rar_generic");
2295 
2296         /* Make sure we are using a valid rar index range */
2297         if (index >= rar_entries) {
2298                 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2299                              "RAR index %d is out of range.\n", index);
2300                 return IXGBE_ERR_INVALID_ARGUMENT;
2301         }
2302 
2303         /* setup VMDq pool selection before this RAR gets enabled */
2304         hw->mac.ops.set_vmdq(hw, index, vmdq);
2305 
2306         /*
2307          * HW expects these in little endian so we reverse the byte
2308          * order from network order (big endian) to little endian
2309          */
2310         rar_low = ((u32)addr[0] |
2311                    ((u32)addr[1] << 8) |
2312                    ((u32)addr[2] << 16) |
2313                    ((u32)addr[3] << 24));
2314         /*
2315          * Some parts put the VMDq setting in the extra RAH bits,
2316          * so save everything except the lower 16 bits that hold part
2317          * of the address and the address valid bit.
2318          */
2319         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));


2328 
2329         return IXGBE_SUCCESS;
2330 }
2331 
2332 /**
2333  *  ixgbe_clear_rar_generic - Remove Rx address register
2334  *  @hw: pointer to hardware structure
2335  *  @index: Receive address register to write
2336  *
2337  *  Clears an ethernet address from a receive address register.
2338  **/
2339 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2340 {
2341         u32 rar_high;
2342         u32 rar_entries = hw->mac.num_rar_entries;
2343 
2344         DEBUGFUNC("ixgbe_clear_rar_generic");
2345 
2346         /* Make sure we are using a valid rar index range */
2347         if (index >= rar_entries) {
2348                 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2349                              "RAR index %d is out of range.\n", index);
2350                 return IXGBE_ERR_INVALID_ARGUMENT;
2351         }
2352 
2353         /*
2354          * Some parts put the VMDq setting in the extra RAH bits,
2355          * so save everything except the lower 16 bits that hold part
2356          * of the address and the address valid bit.
2357          */
2358         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2359         rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2360 
2361         IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2362         IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2363 
2364         /* clear VMDq pool/queue selection for this RAR */
2365         hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2366 
2367         return IXGBE_SUCCESS;
2368 }
2369 


2413         }
2414         hw->addr_ctrl.overflow_promisc = 0;
2415 
2416         hw->addr_ctrl.rar_used_count = 1;
2417 
2418         /* Zero out the other receive addresses. */
2419         DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2420         for (i = 1; i < rar_entries; i++) {
2421                 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2422                 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2423         }
2424 
2425         /* Clear the MTA */
2426         hw->addr_ctrl.mta_in_use = 0;
2427         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2428 
2429         DEBUGOUT(" Clearing MTA\n");
2430         for (i = 0; i < hw->mac.mcft_size; i++)
2431                 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2432 
2433         ixgbe_init_uta_tables(hw);
2434 
2435         return IXGBE_SUCCESS;
2436 }
2437 
2438 /**
2439  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2440  *  @hw: pointer to hardware structure
2441  *  @addr: new address
2442  *
2443  *  Adds it to unused receive address register or goes into promiscuous mode.
2444  **/
2445 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2446 {
2447         u32 rar_entries = hw->mac.num_rar_entries;
2448         u32 rar;
2449 
2450         DEBUGFUNC("ixgbe_add_uc_addr");
2451 
2452         DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2453                   addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2454 
2455         /*


2627  **/
2628 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2629                                       u32 mc_addr_count, ixgbe_mc_addr_itr next,
2630                                       bool clear)
2631 {
2632         u32 i;
2633         u32 vmdq;
2634 
2635         DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2636 
2637         /*
2638          * Set the new number of MC addresses that we are being requested to
2639          * use.
2640          */
2641         hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2642         hw->addr_ctrl.mta_in_use = 0;
2643 
2644         /* Clear mta_shadow */
2645         if (clear) {
2646                 DEBUGOUT(" Clearing MTA\n");
2647                 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));

2648         }
2649 
2650         /* Update mta_shadow */
2651         for (i = 0; i < mc_addr_count; i++) {
2652                 DEBUGOUT(" Adding the multicast addresses:\n");
2653                 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2654         }
2655 
2656         /* Enable mta */
2657         for (i = 0; i < hw->mac.mcft_size; i++)
2658                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2659                                       hw->mac.mta_shadow[i]);
2660 
2661         if (hw->addr_ctrl.mta_in_use > 0)
2662                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2663                                 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2664 
2665         DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2666         return IXGBE_SUCCESS;
2667 }


2772                  * isn't a way to advertise that we are capable of RX
2773                  * Pause ONLY, we will advertise that we support both
2774                  * symmetric and asymmetric Rx PAUSE.  Later, we will
2775                  * disable the adapter's ability to send PAUSE frames.
2776                  */
2777                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2778                 break;
2779         case ixgbe_fc_tx_pause:
2780                 /*
2781                  * Tx Flow control is enabled, and Rx Flow control is
2782                  * disabled by software override.
2783                  */
2784                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2785                 break;
2786         case ixgbe_fc_full:
2787                 /* Flow control (both Rx and Tx) is enabled by SW override. */
2788                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2789                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2790                 break;
2791         default:
2792                 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2793                              "Flow control param set incorrectly\n");
2794                 ret_val = IXGBE_ERR_CONFIG;
2795                 goto out;
2796                 break;
2797         }
2798 
2799         /* Set 802.3x based flow control settings. */
2800         mflcn_reg |= IXGBE_MFLCN_DPF;
2801         IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2802         IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2803 
2804 
2805         /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2806         for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2807                 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2808                     hw->fc.high_water[i]) {
2809                         fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2810                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2811                         fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2812                 } else {
2813                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2814                         /*
2815                          * In order to prevent Tx hangs when the internal Tx
2816                          * switch is enabled we must set the high water mark
2817                          * to the Rx packet buffer size - 24KB.  This allows
2818                          * the Tx switch to function even under heavy Rx
2819                          * workloads.
2820                          */
2821                         fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2822                 }
2823 
2824                 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2825         }
2826 
2827         /* Configure pause time (2 TCs per register) */
2828         reg = hw->fc.pause_time * 0x00010001;
2829         for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2830                 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2831 
2832         /* Configure flow control refresh threshold value */
2833         IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2834 
2835 out:
2836         return ret_val;
2837 }
2838 
2839 /**
2840  *  ixgbe_negotiate_fc - Negotiate flow control
2841  *  @hw: pointer to hardware structure
2842  *  @adv_reg: flow control advertised settings
2843  *  @lp_reg: link partner's flow control settings
2844  *  @adv_sym: symmetric pause bit in advertisement
2845  *  @adv_asm: asymmetric pause bit in advertisement
2846  *  @lp_sym: symmetric pause bit in link partner advertisement
2847  *  @lp_asm: asymmetric pause bit in link partner advertisement
2848  *
2849  *  Find the intersection between advertised settings and link partner's
2850  *  advertised settings
2851  **/
2852 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2853                               u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2854 {
2855         if ((!(adv_reg)) ||  (!(lp_reg))) {
2856                 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2857                              "Local or link partner's advertised flow control "
2858                              "settings are NULL. Local: %x, link partner: %x\n",
2859                              adv_reg, lp_reg);
2860                 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2861         }
2862 
2863         if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2864                 /*
2865                  * Now we need to check if the user selected Rx ONLY
2866                  * of pause frames.  In this case, we had to advertise
2867                  * FULL flow control because we could not advertise RX
2868                  * ONLY. Hence, we must now check to see if we need to
2869                  * turn OFF the TRANSMISSION of PAUSE frames.
2870                  */
2871                 if (hw->fc.requested_mode == ixgbe_fc_full) {
2872                         hw->fc.current_mode = ixgbe_fc_full;
2873                         DEBUGOUT("Flow Control = FULL.\n");
2874                 } else {
2875                         hw->fc.current_mode = ixgbe_fc_rx_pause;
2876                         DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2877                 }
2878         } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879                    (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880                 hw->fc.current_mode = ixgbe_fc_tx_pause;
2881                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");


2892 
2893 /**
2894  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2895  *  @hw: pointer to hardware structure
2896  *
2897  *  Enable flow control according on 1 gig fiber.
2898  **/
2899 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2900 {
2901         u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2902         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2903 
2904         /*
2905          * On multispeed fiber at 1g, bail out if
2906          * - link is up but AN did not complete, or if
2907          * - link is up and AN completed but timed out
2908          */
2909 
2910         linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2911         if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2912             (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2913                 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2914                 goto out;
2915         }
2916 
2917         pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2918         pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2919 
2920         ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2921                                       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2922                                       IXGBE_PCS1GANA_ASM_PAUSE,
2923                                       IXGBE_PCS1GANA_SYM_PAUSE,
2924                                       IXGBE_PCS1GANA_ASM_PAUSE);
2925 
2926 out:
2927         return ret_val;
2928 }
2929 
2930 /**
2931  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2932  *  @hw: pointer to hardware structure
2933  *
2934  *  Enable flow control according to IEEE clause 37.
2935  **/
2936 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2937 {
2938         u32 links2, anlp1_reg, autoc_reg, links;
2939         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2940 
2941         /*
2942          * On backplane, bail out if
2943          * - backplane autoneg was not completed, or if
2944          * - we are 82599 and link partner is not AN enabled
2945          */
2946         links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2947         if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2948                 DEBUGOUT("Auto-Negotiation did not complete\n");
2949                 goto out;
2950         }
2951 
2952         if (hw->mac.type == ixgbe_mac_82599EB) {
2953                 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2954                 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2955                         DEBUGOUT("Link partner is not AN enabled\n");
2956                         goto out;
2957                 }
2958         }
2959         /*
2960          * Read the 10g AN autoc and LP ability registers and resolve
2961          * local flow control settings accordingly
2962          */
2963         autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2964         anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2965 
2966         ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2967                 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2968                 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2969 
2970 out:
2971         return ret_val;
2972 }
2973 
2974 /**
2975  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2976  *  @hw: pointer to hardware structure
2977  *
2978  *  Enable flow control according to IEEE clause 37.


2999  *  ixgbe_fc_autoneg - Configure flow control
3000  *  @hw: pointer to hardware structure
3001  *
3002  *  Compares our advertised flow control capabilities to those advertised by
3003  *  our link partner, and determines the proper flow control mode to use.
3004  **/
3005 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3006 {
3007         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3008         ixgbe_link_speed speed;
3009         bool link_up;
3010 
3011         DEBUGFUNC("ixgbe_fc_autoneg");
3012 
3013         /*
3014          * AN should have completed when the cable was plugged in.
3015          * Look for reasons to bail out.  Bail out if:
3016          * - FC autoneg is disabled, or if
3017          * - link is not up.
3018          */
3019         if (hw->fc.disable_fc_autoneg) {
3020                 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3021                              "Flow control autoneg is disabled");
3022                 goto out;
3023         }
3024 
3025         hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3026         if (!link_up) {
3027                 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3028                 goto out;
3029         }
3030 
3031         switch (hw->phy.media_type) {
3032         /* Autoneg flow control on fiber adapters */
3033         case ixgbe_media_type_fiber_fixed:
3034         case ixgbe_media_type_fiber_qsfp:
3035         case ixgbe_media_type_fiber:
3036                 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3037                         ret_val = ixgbe_fc_autoneg_fiber(hw);
3038                 break;
3039 
3040         /* Autoneg flow control on backplane adapters */
3041         case ixgbe_media_type_backplane:
3042                 ret_val = ixgbe_fc_autoneg_backplane(hw);
3043                 break;
3044 
3045         /* Autoneg flow control on copper adapters */
3046         case ixgbe_media_type_copper:
3047                 if (ixgbe_device_supports_autoneg_fc(hw))
3048                         ret_val = ixgbe_fc_autoneg_copper(hw);
3049                 break;
3050 
3051         default:
3052                 break;
3053         }
3054 
3055 out:
3056         if (ret_val == IXGBE_SUCCESS) {
3057                 hw->fc.fc_was_autonegged = TRUE;
3058         } else {
3059                 hw->fc.fc_was_autonegged = FALSE;
3060                 hw->fc.current_mode = hw->fc.requested_mode;
3061         }
3062 }
3063 
3064 /*
3065  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3066  * @hw: pointer to hardware structure
3067  *
3068  * System-wide timeout range is encoded in PCIe Device Control2 register.
3069  *
3070  * Add 10% to specified maximum and return the number of times to poll for
3071  * completion timeout, in units of 100 microsec.  Never return less than
3072  * 800 = 80 millisec.
3073  */
3074 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3075 {
3076         s16 devctl2;
3077         u32 pollcnt;
3078 
3079         devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3080         devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3081 
3082         switch (devctl2) {
3083         case IXGBE_PCIDEVCTRL2_65_130ms:
3084                 pollcnt = 1300;         /* 130 millisec */
3085                 break;
3086         case IXGBE_PCIDEVCTRL2_260_520ms:
3087                 pollcnt = 5200;         /* 520 millisec */
3088                 break;
3089         case IXGBE_PCIDEVCTRL2_1_2s:
3090                 pollcnt = 20000;        /* 2 sec */
3091                 break;
3092         case IXGBE_PCIDEVCTRL2_4_8s:
3093                 pollcnt = 80000;        /* 8 sec */
3094                 break;
3095         case IXGBE_PCIDEVCTRL2_17_34s:
3096                 pollcnt = 34000;        /* 34 sec */
3097                 break;
3098         case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
3099         case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
3100         case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
3101         case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
3102         default:
3103                 pollcnt = 800;          /* 80 millisec minimum */
3104                 break;
3105         }
3106 
3107         /* add 10% to spec maximum */
3108         return (pollcnt * 11) / 10;
3109 }
3110 
3111 /**
3112  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3113  *  @hw: pointer to hardware structure
3114  *
3115  *  Disables PCI-Express master access and verifies there are no pending
3116  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3117  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3118  *  is returned signifying master requests disabled.
3119  **/
3120 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3121 {
3122         s32 status = IXGBE_SUCCESS;
3123         u32 i, poll;
3124         u16 value;
3125 
3126         DEBUGFUNC("ixgbe_disable_pcie_master");
3127 
3128         /* Always set this bit to ensure any future transactions are blocked */
3129         IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3130 
3131         /* Exit if master requests are blocked */
3132         if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3133             IXGBE_REMOVED(hw->hw_addr))
3134                 goto out;
3135 
3136         /* Poll for master request bit to clear */
3137         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3138                 usec_delay(100);
3139                 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3140                         goto out;
3141         }
3142 
3143         /*
3144          * Two consecutive resets are required via CTRL.RST per datasheet
3145          * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3146          * of this need.  The first reset prevents new master requests from
3147          * being issued by our device.  We then must wait 1usec or more for any
3148          * remaining completions from the PCIe bus to trickle in, and then reset
3149          * again to clear out any effects they may have had on our device.
3150          */
3151         DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3152         hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3153 
3154         if (hw->mac.type >= ixgbe_mac_X550)
3155                 goto out;
3156 
3157         /*
3158          * Before proceeding, make sure that the PCIe block does not have
3159          * transactions pending.
3160          */
3161         poll = ixgbe_pcie_timeout_poll(hw);
3162         for (i = 0; i < poll; i++) {
3163                 usec_delay(100);
3164                 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3165                 if (IXGBE_REMOVED(hw->hw_addr))
3166                         goto out;
3167                 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3168                         goto out;
3169         }
3170 
3171         ERROR_REPORT1(IXGBE_ERROR_POLLING,
3172                      "PCIe transaction pending bit also did not clear.\n");
3173         status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3174 
3175 out:
3176         return status;
3177 }
3178 
3179 /**
3180  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3181  *  @hw: pointer to hardware structure
3182  *  @mask: Mask to specify which semaphore to acquire
3183  *
3184  *  Acquires the SWFW semaphore through the GSSR register for the specified
3185  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3186  **/
3187 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3188 {
3189         u32 gssr = 0;
3190         u32 swmask = mask;
3191         u32 fwmask = mask << 5;
3192         u32 timeout = 200;
3193         u32 i;
3194 
3195         DEBUGFUNC("ixgbe_acquire_swfw_sync");
3196 
3197         for (i = 0; i < timeout; i++) {
3198                 /*
3199                  * SW NVM semaphore bit is used for access to all
3200                  * SW_FW_SYNC bits (not just NVM)
3201                  */
3202                 if (ixgbe_get_eeprom_semaphore(hw))
3203                         return IXGBE_ERR_SWFW_SYNC;
3204 
3205                 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3206                 if (!(gssr & (fwmask | swmask))) {
3207                         gssr |= swmask;
3208                         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);




3209                         ixgbe_release_eeprom_semaphore(hw);
3210                         return IXGBE_SUCCESS;
3211                 } else {
3212                         /* Resource is currently in use by FW or SW */
3213                         ixgbe_release_eeprom_semaphore(hw);
3214                         msec_delay(5);

3215                 }




3216         }
3217 
3218         /* If time expired clear the bits holding the lock and retry */
3219         if (gssr & (fwmask | swmask))
3220                 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3221 
3222         msec_delay(5);
3223         return IXGBE_ERR_SWFW_SYNC;
3224 }
3225 
3226 /**
3227  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3228  *  @hw: pointer to hardware structure
3229  *  @mask: Mask to specify which semaphore to release
3230  *
3231  *  Releases the SWFW semaphore through the GSSR register for the specified
3232  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3233  **/
3234 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3235 {
3236         u32 gssr;
3237         u32 swmask = mask;
3238 
3239         DEBUGFUNC("ixgbe_release_swfw_sync");
3240 
3241         ixgbe_get_eeprom_semaphore(hw);
3242 
3243         gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3244         gssr &= ~swmask;
3245         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3246 
3247         ixgbe_release_eeprom_semaphore(hw);
3248 }
3249 
3250 /**
3251  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3252  *  @hw: pointer to hardware structure
3253  *
3254  *  Stops the receive data path and waits for the HW to internally empty
3255  *  the Rx security block
3256  **/
3257 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3258 {
3259 #define IXGBE_MAX_SECRX_POLL 40
3260 
3261         int i;


3268         secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3269         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3270         for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3271                 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3272                 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3273                         break;
3274                 else
3275                         /* Use interrupt-safe sleep just in case */
3276                         usec_delay(1000);
3277         }
3278 
3279         /* For informational purposes only */
3280         if (i >= IXGBE_MAX_SECRX_POLL)
3281                 DEBUGOUT("Rx unit being enabled before security "
3282                          "path fully disabled.  Continuing with init.\n");
3283 
3284         return IXGBE_SUCCESS;
3285 }
3286 
3287 /**
3288  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3289  *  @hw: pointer to hardware structure
3290  *  @reg_val: Value we read from AUTOC
3291  *
3292  *  The default case requires no protection so just to the register read.
3293  */
3294 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3295 {
3296         *locked = FALSE;
3297         *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3298         return IXGBE_SUCCESS;
3299 }
3300 
3301 /**
3302  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3303  * @hw: pointer to hardware structure
3304  * @reg_val: value to write to AUTOC
3305  * @locked: bool to indicate whether the SW/FW lock was already taken by
3306  *           previous read.
3307  *
3308  * The default case requires no protection so just to the register write.
3309  */
3310 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3311 {
3312         UNREFERENCED_1PARAMETER(locked);
3313 
3314         IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3315         return IXGBE_SUCCESS;
3316 }
3317 
3318 /**
3319  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3320  *  @hw: pointer to hardware structure
3321  *
3322  *  Enables the receive data path.
3323  **/
3324 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3325 {
3326         int secrxreg;
3327 
3328         DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3329 
3330         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3331         secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3332         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3333         IXGBE_WRITE_FLUSH(hw);
3334 
3335         return IXGBE_SUCCESS;
3336 }
3337 
3338 /**
3339  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3340  *  @hw: pointer to hardware structure
3341  *  @regval: register value to write to RXCTRL
3342  *
3343  *  Enables the Rx DMA unit
3344  **/
3345 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3346 {
3347         DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3348 
3349         if (regval & IXGBE_RXCTRL_RXEN)
3350                 ixgbe_enable_rx(hw);
3351         else
3352                 ixgbe_disable_rx(hw);
3353 
3354         return IXGBE_SUCCESS;
3355 }
3356 
3357 /**
3358  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3359  *  @hw: pointer to hardware structure
3360  *  @index: led number to blink
3361  **/
3362 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3363 {
3364         ixgbe_link_speed speed = 0;
3365         bool link_up = 0;
3366         u32 autoc_reg = 0;
3367         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3368         s32 ret_val = IXGBE_SUCCESS;
3369         bool locked = FALSE;
3370 
3371         DEBUGFUNC("ixgbe_blink_led_start_generic");
3372 
3373         /*
3374          * Link must be up to auto-blink the LEDs;
3375          * Force it if link is down.
3376          */
3377         hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3378 
3379         if (!link_up) {
3380                 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3381                 if (ret_val != IXGBE_SUCCESS)
3382                         goto out;
3383 
3384                 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3385                 autoc_reg |= IXGBE_AUTOC_FLU;
3386 
3387                 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3388                 if (ret_val != IXGBE_SUCCESS)
3389                         goto out;
3390 
3391                 IXGBE_WRITE_FLUSH(hw);
3392                 msec_delay(10);
3393         }
3394 
3395         led_reg &= ~IXGBE_LED_MODE_MASK(index);
3396         led_reg |= IXGBE_LED_BLINK(index);
3397         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3398         IXGBE_WRITE_FLUSH(hw);
3399 
3400 out:
3401         return ret_val;
3402 }
3403 
3404 /**
3405  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3406  *  @hw: pointer to hardware structure
3407  *  @index: led number to stop blinking
3408  **/
3409 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3410 {
3411         u32 autoc_reg = 0;
3412         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3413         s32 ret_val = IXGBE_SUCCESS;
3414         bool locked = FALSE;
3415 
3416         DEBUGFUNC("ixgbe_blink_led_stop_generic");
3417 
3418         ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3419         if (ret_val != IXGBE_SUCCESS)
3420                 goto out;
3421 
3422         autoc_reg &= ~IXGBE_AUTOC_FLU;
3423         autoc_reg |= IXGBE_AUTOC_AN_RESTART;

3424 
3425         ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3426         if (ret_val != IXGBE_SUCCESS)
3427                 goto out;
3428 
3429         led_reg &= ~IXGBE_LED_MODE_MASK(index);
3430         led_reg &= ~IXGBE_LED_BLINK(index);
3431         led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3432         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3433         IXGBE_WRITE_FLUSH(hw);
3434 
3435 out:
3436         return ret_val;
3437 }
3438 
3439 /**
3440  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3441  *  @hw: pointer to hardware structure
3442  *  @san_mac_offset: SAN MAC address offset
3443  *
3444  *  This function will read the EEPROM location for the SAN MAC address
3445  *  pointer, and returns the value at that location.  This is used in both
3446  *  get and set mac_addr routines.
3447  **/
3448 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3449                                          u16 *san_mac_offset)
3450 {
3451         s32 ret_val;
3452 
3453         DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3454 
3455         /*
3456          * First read the EEPROM pointer to see if the MAC addresses are
3457          * available.
3458          */
3459         ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3460                                       san_mac_offset);
3461         if (ret_val) {
3462                 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3463                               "eeprom at offset %d failed",
3464                               IXGBE_SAN_MAC_ADDR_PTR);
3465         }
3466 
3467         return ret_val;
3468 }
3469 
3470 /**
3471  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3472  *  @hw: pointer to hardware structure
3473  *  @san_mac_addr: SAN MAC address
3474  *
3475  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3476  *  per-port, so set_lan_id() must be called before reading the addresses.
3477  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3478  *  upon for non-SFP connections, so we must call it here.
3479  **/
3480 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3481 {
3482         u16 san_mac_data, san_mac_offset;
3483         u8 i;
3484         s32 ret_val;
3485 
3486         DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3487 
3488         /*
3489          * First read the EEPROM pointer to see if the MAC addresses are
3490          * available.  If they're not, no point in calling set_lan_id() here.
3491          */
3492         ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3493         if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)








3494                 goto san_mac_addr_out;

3495 
3496         /* make sure we know which port we need to program */
3497         hw->mac.ops.set_lan_id(hw);
3498         /* apply the port offset to the address offset */
3499         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3500                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3501         for (i = 0; i < 3; i++) {
3502                 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3503                                               &san_mac_data);
3504                 if (ret_val) {
3505                         ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3506                                       "eeprom read at offset %d failed",
3507                                       san_mac_offset);
3508                         goto san_mac_addr_out;
3509                 }
3510                 san_mac_addr[i * 2] = (u8)(san_mac_data);
3511                 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3512                 san_mac_offset++;
3513         }
3514         return IXGBE_SUCCESS;
3515 
3516 san_mac_addr_out:
3517         /*
3518          * No addresses available in this EEPROM.  It's not an
3519          * error though, so just wipe the local address and return.
3520          */
3521         for (i = 0; i < 6; i++)
3522                 san_mac_addr[i] = 0xFF;
3523         return IXGBE_SUCCESS;
3524 }
3525 
3526 /**
3527  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3528  *  @hw: pointer to hardware structure
3529  *  @san_mac_addr: SAN MAC address
3530  *
3531  *  Write a SAN MAC address to the EEPROM.
3532  **/
3533 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3534 {
3535         s32 ret_val;
3536         u16 san_mac_data, san_mac_offset;
3537         u8 i;
3538 
3539         DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3540 
3541         /* Look for SAN mac address pointer.  If not defined, return */
3542         ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3543         if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3544                 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3545 





3546         /* Make sure we know which port we need to write */
3547         hw->mac.ops.set_lan_id(hw);
3548         /* Apply the port offset to the address offset */
3549         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3550                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3551 
3552         for (i = 0; i < 3; i++) {
3553                 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3554                 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3555                 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3556                 san_mac_offset++;
3557         }
3558 
3559         return IXGBE_SUCCESS;

3560 }
3561 
3562 /**
3563  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3564  *  @hw: pointer to hardware structure
3565  *
3566  *  Read PCIe configuration space, and get the MSI-X vector count from
3567  *  the capabilities table.
3568  **/
3569 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3570 {
3571         u16 msix_count = 1;
3572         u16 max_msix_count;
3573         u16 pcie_offset;
3574 
3575         switch (hw->mac.type) {
3576         case ixgbe_mac_82598EB:
3577                 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3578                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3579                 break;
3580         case ixgbe_mac_82599EB:
3581         case ixgbe_mac_X540:
3582         case ixgbe_mac_X550:
3583         case ixgbe_mac_X550EM_x:
3584                 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3585                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3586                 break;
3587         default:
3588                 return msix_count;
3589         }
3590 
3591         DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3592         msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3593         if (IXGBE_REMOVED(hw->hw_addr))
3594                 msix_count = 0;
3595         msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3596 
3597         /* MSI-X count is zero-based in HW */
3598         msix_count++;
3599 
3600         if (msix_count > max_msix_count)
3601                 msix_count = max_msix_count;
3602 
3603         return msix_count;
3604 }
3605 
3606 /**
3607  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3608  *  @hw: pointer to hardware structure
3609  *  @addr: Address to put into receive address register
3610  *  @vmdq: VMDq pool to assign
3611  *
3612  *  Puts an ethernet address into a receive address register, or
3613  *  finds the rar that it is already in; adds to the pool list
3614  **/
3615 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3616 {
3617         static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3618         u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3619         u32 rar;
3620         u32 rar_low, rar_high;
3621         u32 addr_low, addr_high;
3622 
3623         DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3624 
3625         /* swap bytes for HW little endian */
3626         addr_low  = addr[0] | (addr[1] << 8)
3627                             | (addr[2] << 16)
3628                             | (addr[3] << 24);
3629         addr_high = addr[4] | (addr[5] << 8);
3630 
3631         /*
3632          * Either find the mac_id in rar or find the first empty space.
3633          * rar_highwater points to just after the highest currently used
3634          * rar in order to shorten the search.  It grows when we add a new
3635          * rar to the top.
3636          */
3637         for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3638                 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3639 
3640                 if (((IXGBE_RAH_AV & rar_high) == 0)
3641                     && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3642                         first_empty_rar = rar;
3643                 } else if ((rar_high & 0xFFFF) == addr_high) {
3644                         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3645                         if (rar_low == addr_low)
3646                                 break;    /* found it already in the rars */
3647                 }
3648         }
3649 
3650         if (rar < hw->mac.rar_highwater) {
3651                 /* already there so just add to the pool bits */
3652                 ixgbe_set_vmdq(hw, rar, vmdq);
3653         } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3654                 /* stick it into first empty RAR slot we found */
3655                 rar = first_empty_rar;
3656                 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657         } else if (rar == hw->mac.rar_highwater) {
3658                 /* add it to the top of the list and inc the highwater mark */
3659                 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3660                 hw->mac.rar_highwater++;
3661         } else if (rar >= hw->mac.num_rar_entries) {
3662                 return IXGBE_ERR_INVALID_MAC_ADDR;
3663         }
3664 
3665         /*
3666          * If we found rar[0], make sure the default pool bit (we use pool 0)
3667          * remains cleared to be sure default pool packets will get delivered
3668          */
3669         if (rar == 0)
3670                 ixgbe_clear_vmdq(hw, rar, 0);
3671 
3672         return rar;
3673 }
3674 
3675 /**
3676  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3677  *  @hw: pointer to hardware struct
3678  *  @rar: receive address register index to disassociate
3679  *  @vmdq: VMDq pool index to remove from the rar
3680  **/
3681 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3682 {
3683         u32 mpsar_lo, mpsar_hi;
3684         u32 rar_entries = hw->mac.num_rar_entries;
3685 
3686         DEBUGFUNC("ixgbe_clear_vmdq_generic");
3687 
3688         /* Make sure we are using a valid rar index range */
3689         if (rar >= rar_entries) {
3690                 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3691                              "RAR index %d is out of range.\n", rar);
3692                 return IXGBE_ERR_INVALID_ARGUMENT;
3693         }
3694 
3695         mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3696         mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3697 
3698         if (IXGBE_REMOVED(hw->hw_addr))
3699                 goto done;
3700 
3701         if (!mpsar_lo && !mpsar_hi)
3702                 goto done;
3703 
3704         if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3705                 if (mpsar_lo) {
3706                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3707                         mpsar_lo = 0;
3708                 }
3709                 if (mpsar_hi) {
3710                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3711                         mpsar_hi = 0;
3712                 }
3713         } else if (vmdq < 32) {
3714                 mpsar_lo &= ~(1 << vmdq);
3715                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3716         } else {
3717                 mpsar_hi &= ~(1 << (vmdq - 32));
3718                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3719         }
3720 


3723                 hw->mac.ops.clear_rar(hw, rar);
3724 done:
3725         return IXGBE_SUCCESS;
3726 }
3727 
3728 /**
3729  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3730  *  @hw: pointer to hardware struct
3731  *  @rar: receive address register index to associate with a VMDq index
3732  *  @vmdq: VMDq pool index
3733  **/
3734 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3735 {
3736         u32 mpsar;
3737         u32 rar_entries = hw->mac.num_rar_entries;
3738 
3739         DEBUGFUNC("ixgbe_set_vmdq_generic");
3740 
3741         /* Make sure we are using a valid rar index range */
3742         if (rar >= rar_entries) {
3743                 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3744                              "RAR index %d is out of range.\n", rar);
3745                 return IXGBE_ERR_INVALID_ARGUMENT;
3746         }
3747 
3748         if (vmdq < 32) {
3749                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3750                 mpsar |= 1 << vmdq;
3751                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3752         } else {
3753                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3754                 mpsar |= 1 << (vmdq - 32);
3755                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3756         }
3757         return IXGBE_SUCCESS;
3758 }
3759 
3760 /**
3761  *  This function should only be involved in the IOV mode.
3762  *  In IOV mode, Default pool is next pool after the number of
3763  *  VFs advertized and not 0.
3764  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]


3823           * Search for the vlan id in the VLVF entries. Save off the first empty
3824           * slot found along the way
3825           */
3826         for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3827                 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3828                 if (!bits && !(first_empty_slot))
3829                         first_empty_slot = regindex;
3830                 else if ((bits & 0x0FFF) == vlan)
3831                         break;
3832         }
3833 
3834         /*
3835           * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3836           * in the VLVF. Else use the first empty VLVF register for this
3837           * vlan id.
3838           */
3839         if (regindex >= IXGBE_VLVF_ENTRIES) {
3840                 if (first_empty_slot)
3841                         regindex = first_empty_slot;
3842                 else {
3843                         ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3844                                      "No space in VLVF.\n");
3845                         regindex = IXGBE_ERR_NO_SPACE;
3846                 }
3847         }
3848 
3849         return regindex;
3850 }
3851 
3852 /**
3853  *  ixgbe_set_vfta_generic - Set VLAN filter table
3854  *  @hw: pointer to hardware structure
3855  *  @vlan: VLAN id to write to VLAN filter
3856  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3857  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3858  *
3859  *  Turn on/off specified VLAN in the VLAN filter table.
3860  **/
3861 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3862                            bool vlan_on)
3863 {
3864         s32 regindex;


4059  **/
4060 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4061                                  bool *link_up, bool link_up_wait_to_complete)
4062 {
4063         u32 links_reg, links_orig;
4064         u32 i;
4065 
4066         DEBUGFUNC("ixgbe_check_mac_link_generic");
4067 
4068         /* clear the old state */
4069         links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4070 
4071         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4072 
4073         if (links_orig != links_reg) {
4074                 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4075                           links_orig, links_reg);
4076         }
4077 
4078         if (link_up_wait_to_complete) {
4079                 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4080                         if (links_reg & IXGBE_LINKS_UP) {
4081                                 *link_up = TRUE;
4082                                 break;
4083                         } else {
4084                                 *link_up = FALSE;
4085                         }
4086                         msec_delay(100);
4087                         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4088                 }
4089         } else {
4090                 if (links_reg & IXGBE_LINKS_UP)
4091                         *link_up = TRUE;
4092                 else
4093                         *link_up = FALSE;
4094         }
4095 
4096         switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4097         case IXGBE_LINKS_SPEED_10G_82599:
4098                 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4099                 if (hw->mac.type >= ixgbe_mac_X550) {
4100                         if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4101                                 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4102                 }
4103                 break;
4104         case IXGBE_LINKS_SPEED_1G_82599:
4105                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4106                 break;
4107         case IXGBE_LINKS_SPEED_100_82599:
4108                 *speed = IXGBE_LINK_SPEED_100_FULL;
4109                 if (hw->mac.type >= ixgbe_mac_X550) {
4110                         if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4111                                 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4112                 }
4113                 break;
4114         default:
4115                 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4116         }
4117 
4118         return IXGBE_SUCCESS;
4119 }
4120 
4121 /**
4122  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4123  *  the EEPROM
4124  *  @hw: pointer to hardware structure
4125  *  @wwnn_prefix: the alternative WWNN prefix
4126  *  @wwpn_prefix: the alternative WWPN prefix
4127  *
4128  *  This function will read the EEPROM from the alternative SAN MAC address
4129  *  block to check the support for the alternative WWNN/WWPN prefix support.
4130  **/
4131 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4132                                  u16 *wwpn_prefix)
4133 {
4134         u16 offset, caps;
4135         u16 alt_san_mac_blk_offset;
4136 
4137         DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4138 
4139         /* clear output first */
4140         *wwnn_prefix = 0xFFFF;
4141         *wwpn_prefix = 0xFFFF;
4142 
4143         /* check if alternative SAN MAC is supported */
4144         offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4145         if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4146                 goto wwn_prefix_err;
4147 
4148         if ((alt_san_mac_blk_offset == 0) ||
4149             (alt_san_mac_blk_offset == 0xFFFF))
4150                 goto wwn_prefix_out;
4151 
4152         /* check capability in alternative san mac address block */
4153         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4154         if (hw->eeprom.ops.read(hw, offset, &caps))
4155                 goto wwn_prefix_err;
4156         if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4157                 goto wwn_prefix_out;
4158 
4159         /* get the corresponding prefix for WWNN/WWPN */
4160         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4161         if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4162                 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4163                               "eeprom read at offset %d failed", offset);
4164         }
4165 
4166         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4167         if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4168                 goto wwn_prefix_err;
4169 
4170 wwn_prefix_out:
4171         return IXGBE_SUCCESS;
4172 
4173 wwn_prefix_err:
4174         ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4175                       "eeprom read at offset %d failed", offset);
4176         return IXGBE_SUCCESS;
4177 }
4178 
4179 /**
4180  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4181  *  @hw: pointer to hardware structure
4182  *  @bs: the fcoe boot status
4183  *
4184  *  This function will read the FCOE boot status from the iSCSI FCOE block
4185  **/
4186 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4187 {
4188         u16 offset, caps, flags;
4189         s32 status;
4190 
4191         DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4192 
4193         /* clear output first */
4194         *bs = ixgbe_fcoe_bootstatus_unavailable;
4195 
4196         /* check if FCOE IBA block is present */


4254 
4255         /*
4256          * The PF should be allowed to spoof so that it can support
4257          * emulation mode NICs.  Do not set the bits assigned to the PF
4258          */
4259         pfvfspoof &= (1 << pf_target_shift) - 1;
4260         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4261 
4262         /*
4263          * Remaining pools belong to the PF so they do not need to have
4264          * anti-spoofing enabled.
4265          */
4266         for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4267                 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4268 }
4269 
4270 /**
4271  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4272  *  @hw: pointer to hardware structure
4273  *  @enable: enable or disable switch for VLAN anti-spoofing
4274  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4275  *
4276  **/
4277 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4278 {
4279         int vf_target_reg = vf >> 3;
4280         int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4281         u32 pfvfspoof;
4282 
4283         if (hw->mac.type == ixgbe_mac_82598EB)
4284                 return;
4285 
4286         pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4287         if (enable)
4288                 pfvfspoof |= (1 << vf_target_shift);
4289         else
4290                 pfvfspoof &= ~(1 << vf_target_shift);
4291         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4292 }
4293 
4294 /**


4326                 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4327                 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4328         }
4329 
4330         for (i = 0; i < hw->mac.max_rx_queues; i++) {
4331                 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4332                 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4333                           IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4334                 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4335         }
4336 
4337 }
4338 
4339 /**
4340  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4341  *  @buffer: pointer to EEPROM
4342  *  @length: size of EEPROM to calculate a checksum for
4343  *  Calculates the checksum for some buffer on a specified length.  The
4344  *  checksum calculated is returned.
4345  **/
4346 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4347 {
4348         u32 i;
4349         u8 sum = 0;
4350 
4351         DEBUGFUNC("ixgbe_calculate_checksum");
4352 
4353         if (!buffer)
4354                 return 0;
4355 
4356         for (i = 0; i < length; i++)
4357                 sum += buffer[i];
4358 
4359         return (u8) (0 - sum);
4360 }
4361 
4362 /**
4363  *  ixgbe_host_interface_command - Issue command to manageability block
4364  *  @hw: pointer to the HW structure
4365  *  @buffer: contains the command to write and where the return status will
4366  *   be placed
4367  *  @length: length of buffer, must be multiple of 4 bytes
4368  *  @timeout: time in ms to wait for command completion
4369  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4370  *   Needed because FW structures are big endian and decoding of
4371  *   these fields can be 8 bit or 16 bit based on command. Decoding
4372  *   is not easily understood without making a table of commands.
4373  *   So we will leave this up to the caller to read back the data
4374  *   in these cases.
4375  *
4376  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4377  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4378  **/
4379 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4380                                  u32 length, u32 timeout, bool return_data)
4381 {
4382         u32 hicr, i, bi, fwsts;
4383         u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4384         u16 buf_len;
4385         u16 dword_len;
4386 


4387         DEBUGFUNC("ixgbe_host_interface_command");
4388 
4389         if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4390                 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4391                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;


4392         }
4393         /* Set bit 9 of FWSTS clearing FW reset indication */
4394         fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4395         IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4396 
4397         /* Check that the host interface is enabled. */
4398         hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4399         if ((hicr & IXGBE_HICR_EN) == 0) {
4400                 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4401                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;

4402         }
4403 
4404         /* Calculate length in DWORDs. We must be DWORD aligned */
4405         if ((length % (sizeof(u32))) != 0) {
4406                 DEBUGOUT("Buffer length failure, not aligned to dword");
4407                 return IXGBE_ERR_INVALID_ARGUMENT;
4408         }
4409 
4410         dword_len = length >> 2;
4411 
4412         /* The device driver writes the relevant command block

4413          * into the ram area.
4414          */
4415         for (i = 0; i < dword_len; i++)
4416                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4417                                       i, IXGBE_CPU_TO_LE32(buffer[i]));
4418 
4419         /* Setting this bit tells the ARC that a new command is pending. */
4420         IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4421 
4422         for (i = 0; i < timeout; i++) {
4423                 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4424                 if (!(hicr & IXGBE_HICR_C))
4425                         break;
4426                 msec_delay(1);
4427         }
4428 
4429         /* Check command completion */
4430         if ((timeout != 0 && i == timeout) ||
4431             !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4432                 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4433                              "Command has failed with no status valid.\n");
4434                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4435         }
4436 
4437         if (!return_data)
4438                 return 0;
4439 
4440         /* Calculate length in DWORDs */
4441         dword_len = hdr_size >> 2;
4442 
4443         /* first pull in the header so we know the buffer length */
4444         for (bi = 0; bi < dword_len; bi++) {
4445                 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4446                 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4447         }
4448 
4449         /* If there is any thing in data position pull it in */
4450         buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4451         if (buf_len == 0)
4452                 return 0;
4453 
4454         if (length < buf_len + hdr_size) {
4455                 DEBUGOUT("Buffer not large enough for reply message.\n");
4456                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;

4457         }
4458 
4459         /* Calculate length in DWORDs, add 3 for odd lengths */
4460         dword_len = (buf_len + 3) >> 2;
4461 
4462         /* Pull in the rest of the buffer (bi is where we left off) */
4463         for (; bi <= dword_len; bi++) {
4464                 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4465                 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4466         }
4467 
4468         return 0;

4469 }
4470 
4471 /**
4472  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4473  *  @hw: pointer to the HW structure
4474  *  @maj: driver version major number
4475  *  @min: driver version minor number
4476  *  @build: driver version build number
4477  *  @sub: driver version sub build number
4478  *
4479  *  Sends driver version number to firmware through the manageability
4480  *  block.  On success return IXGBE_SUCCESS
4481  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4482  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4483  **/
4484 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4485                                  u8 build, u8 sub)
4486 {
4487         struct ixgbe_hic_drv_info fw_cmd;
4488         int i;


4494             != IXGBE_SUCCESS) {
4495                 ret_val = IXGBE_ERR_SWFW_SYNC;
4496                 goto out;
4497         }
4498 
4499         fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4500         fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4501         fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4502         fw_cmd.port_num = (u8)hw->bus.func;
4503         fw_cmd.ver_maj = maj;
4504         fw_cmd.ver_min = min;
4505         fw_cmd.ver_build = build;
4506         fw_cmd.ver_sub = sub;
4507         fw_cmd.hdr.checksum = 0;
4508         fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4509                                 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4510         fw_cmd.pad = 0;
4511         fw_cmd.pad2 = 0;
4512 
4513         for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {

4514                 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4515                                                        sizeof(fw_cmd),
4516                                                        IXGBE_HI_COMMAND_TIMEOUT,
4517                                                        TRUE);
4518                 if (ret_val != IXGBE_SUCCESS)
4519                         continue;
4520 
4521                 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4522                     FW_CEM_RESP_STATUS_SUCCESS)
4523                         ret_val = IXGBE_SUCCESS;
4524                 else
4525                         ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4526 
4527                 break;
4528         }
4529 
4530         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4531 out:
4532         return ret_val;
4533 }
4534 
4535 /**
4536  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4537  * @hw: pointer to hardware structure


4549         /* Reserve headroom */
4550         pbsize -= headroom;
4551 
4552         if (!num_pb)
4553                 num_pb = 1;
4554 
4555         /* Divide remaining packet buffer space amongst the number of packet
4556          * buffers requested using supplied strategy.
4557          */
4558         switch (strategy) {
4559         case PBA_STRATEGY_WEIGHTED:
4560                 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4561                  * buffer with 5/8 of the packet buffer space.
4562                  */
4563                 rxpktsize = (pbsize * 5) / (num_pb * 4);
4564                 pbsize -= rxpktsize * (num_pb / 2);
4565                 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4566                 for (; i < (num_pb / 2); i++)
4567                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4568                 /* Fall through to configure remaining packet buffers */

4569         case PBA_STRATEGY_EQUAL:
4570                 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4571                 for (; i < num_pb; i++)
4572                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4573                 break;
4574         default:
4575                 break;
4576         }
4577 
4578         /* Only support an equally distributed Tx packet buffer strategy. */
4579         txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4580         txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4581         for (i = 0; i < num_pb; i++) {
4582                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4583                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4584         }
4585 
4586         /* Clear unused TCs, if any, to zero buffer size*/
4587         for (; i < IXGBE_MAX_PB; i++) {
4588                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4589                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4590                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4591         }
4592 }
4593 
4594 /**
4595  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4596  * @hw: pointer to the hardware structure
4597  *
4598  * The 82599 and x540 MACs can experience issues if TX work is still pending
4599  * when a reset occurs.  This function prevents this by flushing the PCIe
4600  * buffers on the system.
4601  **/
4602 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4603 {
4604         u32 gcr_ext, hlreg0, i, poll;
4605         u16 value;
4606 
4607         /*
4608          * If double reset is not requested then all transactions should
4609          * already be clear and as such there is no work to do
4610          */
4611         if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4612                 return;
4613 
4614         /*
4615          * Set loopback enable to prevent any transmits from being sent
4616          * should the link come up.  This assumes that the RXCTRL.RXEN bit
4617          * has already been cleared.
4618          */
4619         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4620         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4621 
4622         /* Wait for a last completion before clearing buffers */
4623         IXGBE_WRITE_FLUSH(hw);
4624         msec_delay(3);
4625 
4626         /*
4627          * Before proceeding, make sure that the PCIe block does not have
4628          * transactions pending.
4629          */
4630         poll = ixgbe_pcie_timeout_poll(hw);
4631         for (i = 0; i < poll; i++) {
4632                 usec_delay(100);
4633                 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4634                 if (IXGBE_REMOVED(hw->hw_addr))
4635                         goto out;
4636                 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4637                         goto out;
4638         }
4639 
4640 out:
4641         /* initiate cleaning flow for buffers in the PCIe transaction layer */
4642         gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4643         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4644                         gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4645 
4646         /* Flush all writes and allow 20usec for all transactions to clear */
4647         IXGBE_WRITE_FLUSH(hw);
4648         usec_delay(20);
4649 
4650         /* restore previous register values */
4651         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4652         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4653 }
4654 
4655 
4656 /**
4657  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4658  * @hw: pointer to hardware structure
4659  * @map: pointer to u8 arr for returning map
4660  *
4661  * Read the rtrup2tc HW register and resolve its content into map
4662  **/
4663 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4664 {
4665         u32 reg, i;
4666 
4667         reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4668         for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4669                 map[i] = IXGBE_RTRUP2TC_UP_MASK &
4670                         (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4671         return;
4672 }
4673 
4674 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4675 {
4676         u32 pfdtxgswc;
4677         u32 rxctrl;
4678 
4679         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4680         if (rxctrl & IXGBE_RXCTRL_RXEN) {
4681                 if (hw->mac.type != ixgbe_mac_82598EB) {
4682                         pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4683                         if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4684                                 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4685                                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4686                                 hw->mac.set_lben = TRUE;
4687                         } else {
4688                                 hw->mac.set_lben = FALSE;
4689                         }
4690                 }
4691                 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4692                 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4693         }
4694 }
4695 
4696 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4697 {
4698         u32 pfdtxgswc;
4699         u32 rxctrl;
4700 
4701         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4702         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4703 
4704         if (hw->mac.type != ixgbe_mac_82598EB) {
4705                 if (hw->mac.set_lben) {
4706                         pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4707                         pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4708                         IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4709                         hw->mac.set_lben = FALSE;
4710                 }
4711         }
4712 }
4713 
4714 /**
4715  * ixgbe_mng_present - returns TRUE when management capability is present
4716  * @hw: pointer to hardware structure
4717  */
4718 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4719 {
4720         u32 fwsm;
4721 
4722         if (hw->mac.type < ixgbe_mac_82599EB)
4723                 return FALSE;
4724 
4725         fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4726         fwsm &= IXGBE_FWSM_MODE_MASK;
4727         return fwsm == IXGBE_FWSM_FW_MODE_PT;
4728 }
4729 
4730 /**
4731  * ixgbe_mng_enabled - Is the manageability engine enabled?
4732  * @hw: pointer to hardware structure
4733  *
4734  * Returns TRUE if the manageability engine is enabled.
4735  **/
4736 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4737 {
4738         u32 fwsm, manc, factps;
4739 
4740         fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4741         if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4742                 return FALSE;
4743 
4744         manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4745         if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4746                 return FALSE;
4747 
4748         if (hw->mac.type <= ixgbe_mac_X540) {
4749                 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4750                 if (factps & IXGBE_FACTPS_MNGCG)
4751                         return FALSE;
4752         }
4753 
4754         return TRUE;
4755 }
4756 
4757 /**
4758  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4759  *  @hw: pointer to hardware structure
4760  *  @speed: new link speed
4761  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4762  *
4763  *  Set the link speed in the MAC and/or PHY register and restarts link.
4764  **/
4765 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4766                                           ixgbe_link_speed speed,
4767                                           bool autoneg_wait_to_complete)
4768 {
4769         ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4770         ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4771         s32 status = IXGBE_SUCCESS;
4772         u32 speedcnt = 0;
4773         u32 i = 0;
4774         bool autoneg, link_up = FALSE;
4775 
4776         DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4777 
4778         /* Mask off requested but non-supported speeds */
4779         status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4780         if (status != IXGBE_SUCCESS)
4781                 return status;
4782 
4783         speed &= link_speed;
4784 
4785         /* Try each speed one by one, highest priority first.  We do this in
4786          * software because 10Gb fiber doesn't support speed autonegotiation.
4787          */
4788         if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4789                 speedcnt++;
4790                 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4791 
4792                 /* If we already have link at this speed, just jump out */
4793                 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4794                 if (status != IXGBE_SUCCESS)
4795                         return status;
4796 
4797                 if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4798                         goto out;
4799 
4800                 /* Set the module link speed */
4801                 switch (hw->phy.media_type) {
4802                 case ixgbe_media_type_fiber_fixed:
4803                 case ixgbe_media_type_fiber:
4804                         ixgbe_set_rate_select_speed(hw,
4805                                                     IXGBE_LINK_SPEED_10GB_FULL);
4806                         break;
4807                 case ixgbe_media_type_fiber_qsfp:
4808                         /* QSFP module automatically detects MAC link speed */
4809                         break;
4810                 default:
4811                         DEBUGOUT("Unexpected media type.\n");
4812                         break;
4813                 }
4814 
4815                 /* Allow module to change analog characteristics (1G->10G) */
4816                 msec_delay(40);
4817 
4818                 status = ixgbe_setup_mac_link(hw,
4819                                               IXGBE_LINK_SPEED_10GB_FULL,
4820                                               autoneg_wait_to_complete);
4821                 if (status != IXGBE_SUCCESS)
4822                         return status;
4823 
4824                 /* Flap the Tx laser if it has not already been done */
4825                 ixgbe_flap_tx_laser(hw);
4826 
4827                 /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4828                  * Section 73.10.2, we may have to wait up to 500ms if KR is
4829                  * attempted.  82599 uses the same timing for 10g SFI.
4830                  */
4831                 for (i = 0; i < 5; i++) {
4832                         /* Wait for the link partner to also set speed */
4833                         msec_delay(100);
4834 
4835                         /* If we have link, just jump out */
4836                         status = ixgbe_check_link(hw, &link_speed,
4837                                                   &link_up, FALSE);
4838                         if (status != IXGBE_SUCCESS)
4839                                 return status;
4840 
4841                         if (link_up)
4842                                 goto out;
4843                 }
4844         }
4845 
4846         if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4847                 speedcnt++;
4848                 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4849                         highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4850 
4851                 /* If we already have link at this speed, just jump out */
4852                 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4853                 if (status != IXGBE_SUCCESS)
4854                         return status;
4855 
4856                 if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4857                         goto out;
4858 
4859                 /* Set the module link speed */
4860                 switch (hw->phy.media_type) {
4861                 case ixgbe_media_type_fiber_fixed:
4862                 case ixgbe_media_type_fiber:
4863                         ixgbe_set_rate_select_speed(hw,
4864                                                     IXGBE_LINK_SPEED_1GB_FULL);
4865                         break;
4866                 case ixgbe_media_type_fiber_qsfp:
4867                         /* QSFP module automatically detects link speed */
4868                         break;
4869                 default:
4870                         DEBUGOUT("Unexpected media type.\n");
4871                         break;
4872                 }
4873 
4874                 /* Allow module to change analog characteristics (10G->1G) */
4875                 msec_delay(40);
4876 
4877                 status = ixgbe_setup_mac_link(hw,
4878                                               IXGBE_LINK_SPEED_1GB_FULL,
4879                                               autoneg_wait_to_complete);
4880                 if (status != IXGBE_SUCCESS)
4881                         return status;
4882 
4883                 /* Flap the Tx laser if it has not already been done */
4884                 ixgbe_flap_tx_laser(hw);
4885 
4886                 /* Wait for the link partner to also set speed */
4887                 msec_delay(100);
4888 
4889                 /* If we have link, just jump out */
4890                 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4891                 if (status != IXGBE_SUCCESS)
4892                         return status;
4893 
4894                 if (link_up)
4895                         goto out;
4896         }
4897 
4898         /* We didn't get link.  Configure back to the highest speed we tried,
4899          * (if there was more than one).  We call ourselves back with just the
4900          * single highest speed that the user requested.
4901          */
4902         if (speedcnt > 1)
4903                 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4904                                                       highest_link_speed,
4905                                                       autoneg_wait_to_complete);
4906 
4907 out:
4908         /* Set autoneg_advertised value based on input link speed */
4909         hw->phy.autoneg_advertised = 0;
4910 
4911         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4912                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4913 
4914         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4915                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4916 
4917         return status;
4918 }
4919 
4920 /**
4921  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4922  *  @hw: pointer to hardware structure
4923  *  @speed: link speed to set
4924  *
4925  *  Set module link speed via the soft rate select.
4926  */
4927 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4928                                         ixgbe_link_speed speed)
4929 {
4930         s32 status;
4931         u8 rs, eeprom_data;
4932 
4933         switch (speed) {
4934         case IXGBE_LINK_SPEED_10GB_FULL:
4935                 /* one bit mask same as setting on */
4936                 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4937                 break;
4938         case IXGBE_LINK_SPEED_1GB_FULL:
4939                 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4940                 break;
4941         default:
4942                 DEBUGOUT("Invalid fixed module speed\n");
4943                 return;
4944         }
4945 
4946         /* Set RS0 */
4947         status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4948                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4949                                            &eeprom_data);
4950         if (status) {
4951                 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4952                 goto out;
4953         }
4954 
4955         eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4956 
4957         status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4958                                             IXGBE_I2C_EEPROM_DEV_ADDR2,
4959                                             eeprom_data);
4960         if (status) {
4961                 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4962                 goto out;
4963         }
4964 
4965         /* Set RS1 */
4966         status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4967                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4968                                            &eeprom_data);
4969         if (status) {
4970                 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4971                 goto out;
4972         }
4973 
4974         eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4975 
4976         status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4977                                             IXGBE_I2C_EEPROM_DEV_ADDR2,
4978                                             eeprom_data);
4979         if (status) {
4980                 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4981                 goto out;
4982         }
4983 out:
4984         return;
4985 }